Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
基本信息
- 批准号:10033514
- 负责人:
- 金额:$ 30.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-11 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellActivity CyclesBehaviorCCNE1 geneCell CycleCell Cycle ArrestCell Cycle ProgressionCell Cycle RegulationCell Differentiation processCell ProliferationCell divisionCell modelCellsChemicalsChromatinClinical TreatmentClinical TrialsCollaborationsCombined Modality TherapyComputer AnalysisComputer ModelsCouplingCuesCyclin D1Cyclin-Dependent KinasesDNADNA BindingDNA DamageDNA RepairDNA Repair InhibitionDNA biosynthesisDataDiseaseDown-RegulationEmbryonic DevelopmentEndodermEpithelial CellsEyeFamilyFutureG2 PhaseGenerationsGeneticGenetic TranscriptionGeometryGoalsGrowthGrowth Factor ReceptorsHumanImageImage AnalysisImmunofluorescence ImmunologicIn VitroInheritedJointsKRAS2 geneKnowledgeLearningLinkMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMessenger RNAMitosisMitoticModelingModernizationMolecularMothersMutateMutationNetwork-basedOncogenesOncogenicOrganPI3K/AKTPancreasPathway interactionsPharmaceutical PreparationsPharmacologyPhysiciansPluripotent Stem CellsProcessProliferatingProtein p53Protocols documentationPublicationsRAS Family GeneRAS genesRadiationRadiation Induced DNA DamageRadiation OncologyRadiation therapyRecording of previous eventsRefractoryResearchResolutionRetinaS PhaseSchemeScientistSignal TransductionStressTestingTherapeuticTimeTissuescancer therapycell typecellular imagingchemotherapychromatin immunoprecipitationclinically relevantconvolutional neural networkdaughter celldesignepithelium regenerationexpectationextracellulargene productgenetic manipulationhuman diseasehuman embryonic stem cellhuman modelhuman stem cellshuman tissueindividualized medicineinduced pluripotent stem cellinsightparacrinepluripotencypredicting responsepredictive modelingresponsesmall moleculesmall molecule inhibitorstem cellstargeted treatmenttherapeutic DNAtransmission processtreatment response
项目摘要
PROJECT SUMMARY / ABSTRACT
The overall goal of this project is to develop computational models that predict how the human cell cycle
responds to clinically-relevant perturbations such as radiotherapy, targeted therapy, oncogenic mutation, and
directed differentiation. These models will fill a significant void in our understanding of the mechanisms
underlying the initiation, progression, and treatment of diseases that involve abnormal cell proliferation. Our
approach is to use quantitative single-cell imaging to measure the molecular states of proliferating cells and to
integrate these data into predictive modeling frameworks. We have assembled a cross-institutional team
comprising a computational biologist, two cell biologists, and a physician scientist with specialization in
radiation oncology. The team has a strong and productive history of collaboration with six joint publications to
date. Aim 1 investigates the mechanism by which retinal epithelial cells respond to radiation-induced DNA
damage during S phase to execute G2 arrest. Time-lapse imaging and deterministic modeling will predict: how
the response to DNA damage is delayed until the S/G2 transition; how a small-molecule inhibitor of DNA
repair—currently involved in clinical trial—intensifies the arrest response; and how loss of the tumor
suppressor p53 renders cells refractory to combination therapy. Aim 2 asks how pancreatic epithelial cells with
mutations in KRAS escape permanent cell cycle arrest. We will use high-content imaging to profile multiple
signaling activities in single cells expressing oncogenic KRAS. These data will be used to construct a manifold
representation of cell cycle progression that spans a two-week time course of oncogenic KRAS-mediated
transformation. Computational analysis of the manifold’s geometry will identify molecular branching points in
G1 that govern the proliferation/arrest decision in pancreatic cells, and we will validate these predictions
through small molecules and genetic manipulation. Aim 3 tests the hypothesis that human embryonic stem
cells inherit cell-cycle-specific gene products (specifically, G1 regulators) from the previous G2 phase to
promote pluripotency in daughter cells. We will combine mitosis-specific chromatin profiling with convolutional
neural network-based image analysis to identify the mechanisms by which stem cells sustain rapid proliferation
and pluripotency over multiple cell-cycle generations. Each aim yields both basic and applied knowledge,
providing fundamental insights into cell cycle progression under perturbation and generating specific,
molecular predictions to inform new treatment schemes. With an eye toward the future, predictive models of
the human cell cycle will enable patient-specific treatments for diseases that are driven by abnormal cell
proliferation.
项目摘要 /摘要
该项目的总体目标是开发计算模型,以预测人类细胞周期的方式
对临床上相关的扰动的反应,例如放疗,靶向治疗,致癌突变和
定向分化。这些模型将填补我们对机制的理解的重要空隙
涉及异常细胞增殖的疾病的倡议,进展和治疗的基础。我们的
方法是使用定量单细胞成像来测量增殖细胞的分子状态和至
将这些数据集成到预测建模框架中。我们组建了一个跨机构的团队
强迫一名计算生物学家,两名细胞生物学家和一名具有专业化的物理科学家
辐射肿瘤学。该团队与六个联合出版物的合作历史有很强的产品历史
日期。 AIM 1研究了仍然对辐射诱导的DNA反应的机制
在S阶段执行G2逮捕的损坏。延时成像和确定性建模将预测:
对DNA损伤的反应延迟到S/G2转变。小分子如何DNA的抑制剂
维修 - 虽然参与了临床试验 - 降低了逮捕反应;以及肿瘤的损失
抑制剂p53使细胞难以合并治疗。 AIM 2询问胰腺上皮细胞如何
KRAS中的突变逃脱了永久性细胞周期停滞。我们将使用高内感成像来概要多个
表达致癌性KRA的单细胞中的信号传导活性。这些数据将用于构建多种
细胞周期进程的表示,跨越了为期两周的致癌性KRAS介导的时间过程
转型。歧管几何形状的计算分析将确定分子分支点
控制胰腺细胞增殖/逮捕决定的G1,我们将验证这些预测
通过小分子和基因操纵。 AIM 3检验了人类胚胎茎的假设
细胞从上一个G2相遗传细胞周期特异性基因产物(特别是G1调节剂)
促进子细胞中的多能性。我们将结合有丝分裂特异性染色质分析与卷积
基于神经网络的图像分析以识别干细胞维持快速增殖的机制
和多能在多个细胞周期世代上。每个目标都会产生基本知识和应用知识,
提供对细胞周期进展的基本见解,并产生特定,
分子预测为新的治疗方案提供信息。着眼于未来,预测模型
人类细胞周期将使患者特异性治疗由异常细胞驱动的疾病
增殖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Purvis其他文献
Jeremy Purvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Purvis', 18)}}的其他基金
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10261500 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Administrative Equipment Supplement for Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期计算模型的管理设备补充,以揭示疾病机制并为治疗提供信息
- 批准号:
10582092 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10458019 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10670944 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
UG Support Administrative Supplement: Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
UG支持行政补充:人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10810424 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Controlling Stem Cell Fate through Computational Modeling
通过计算模型控制干细胞的命运
- 批准号:
9166324 - 财政年份:2016
- 资助金额:
$ 30.71万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8724088 - 财政年份:2012
- 资助金额:
$ 30.71万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8732676 - 财政年份:2012
- 资助金额:
$ 30.71万 - 项目类别:
Dynamics of cellular senescence in single human cells Admin Supplement
人类单个细胞的细胞衰老动力学管理补充
- 批准号:
8841972 - 财政年份:2012
- 资助金额:
$ 30.71万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8353599 - 财政年份:2012
- 资助金额:
$ 30.71万 - 项目类别:
相似国自然基金
SDSS宽发射线活动星系核中基于光谱及光学准周期光变对sub-pc双黑洞系统的研究
- 批准号:12373014
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
雷达影像大地测量揭示的滑坡活动性在地震周期中的演化规律
- 批准号:42374019
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
活动星系核外流的形成及其在准周期变脸活动星系核中的应用
- 批准号:12273089
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
基于皮层时间环路周期与非周期活动的意识损伤机制与意识检测研究
- 批准号:62201380
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于皮层时间环路周期与非周期活动的意识损伤机制与意识检测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10261500 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Administrative Equipment Supplement for Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期计算模型的管理设备补充,以揭示疾病机制并为治疗提供信息
- 批准号:
10582092 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10458019 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10670944 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
UG Support Administrative Supplement: Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
UG支持行政补充:人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10810424 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别: