ADP-ribosylation Cycles

ADP-核糖基化循环

基本信息

项目摘要

Explanation Mono-ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from NAD to an acceptor amino acid. It was first identified as a mechanism of disease pathogenesis in the bacterial diseases such as cholera, diphtheria and pertussis, where toxins ADP-ribosylate critical regulatory and biosynthetic proteins. Mammalian tissues have enzymatic activities that mimic those of the bacterial toxins. Mammalian arginine-specific mono-ADP-ribosylation however, is a reversible modification of protein. Arginine-specific mono-ADP-ribosyltrans- ferases (ARTs) (e.g., ART1, ART5), transfer ADP-ribose from NAD to arginine residues of target proteins and ADP-ribosylarginine hydrolase 1 (ARH1) reverses the reaction by cleaving the ADP-ribose-(arginine)-protein bond. Data are consistent with ART and ARH1 serving as opposing arms of an arginine ADP-ribosylation cycle. 1. TRIM72 is an abundant in heart and skeletal muscle and in lung and kidney epithelial cells where it is involved in membrane repair. Effective membrane repair protects cardiomyocytes from ischemic damage. Oligomerization of TRIM72 was required acutely for membrane repair, bringing TRIM72 to the site of injury. TRIM72 also countered cell damage due to ischemia-reperfusion injury. TRIM72 in complex with caveolin-3 (Cav-3) activated phosphatidylinositol-3-kinases (PI3K)-dependent reperfusion injury salvage kinase (RISK), thereby enhancing cell survival. The regulatory enzymes ART1 and ARH1 and their substrate TRIM72 were found in complexes, which were co-immunoprecipitated from mouse heart lysates. The complexes found in association with TRIM72 appeared to be relatively heterogeneous and could be resolved by FPLC and HPLC. Some of the complexes included Cav-3. It has been reported that TRIM72 oligomerization serves as a key mechanism for regulation of acute membrane repair. Oligomerization of TRIM72, observed in WT mice, was delayed in ARH1-deficient heart lysates, where a dimer of TRIM72 rather than a trimer was seen. In addition, at a cellular level, oligomerization of TRIM72 at the sites of injury required the presence of the mono-ADP-ribosylation cycle, that is, ART1 and ARH1. We propose that a mono-ADP-ribosylation cycle involving recruitment of TRIM72 and other regulatory factors to sites of membrane damage is critical for membrane repair and wound healing following myocardial injury. 2. Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice. Cholera toxin, an 84-kDa multimeric protein and a major virulence factor of Vibrio cholerae, uses the ADP-ribosyltransferase activity of its A subunit to intoxicate host cells. ADP-ribosylation is a posttranslational modification of proteins, in which the ADP-ribose moiety of NAD+ is transferred to an acceptor. In mammalian cells, ADP-ribosylation of acceptors appears to be reversible. ADP-ribosyltransferases (ARTs) catalyze the modification of acceptor proteins, and ADP-ribose-acceptor hydrolases (ARHs) cleave the ADP-ribose-acceptor bond. ARH1 specifically cleaves the ADP-ribose-arginine bond. We previously demonstrated a role for endogenous ARH1 in regulating the extent of cholera toxin-mediated fluid and electrolyte abnormalities in a mouse model of intoxication. Murine ARH1-knockout (KO) cells and ARH1-KO mice exhibited increased sensitivity to cholera toxin compared to their wild-type (WT) counterparts. In the current report, we examined the sensitivity to cholera toxin of male and female ARH1-KO and WT mice. Intestinal loops derived from female ARH1-KO mice when injected with cholera toxin showed increased fluid accumulation compared to male ARH1-KO mice. WT mice did not show gender differences in fluid accumulation, ADP-ribosylarginine content, and ADP-ribosyl Gs levels. Injection of 8-Bromo-cAMP into the intestinal loops also increased fluid accumulation, however, there was no significant difference between female and male mice or in WT and KO mice. Female ARH1-KO mice showed greater amounts of ADP-ribosylated Gs protein and increased ADP-ribosylarginine content both in whole intestine and in epithelial cells than did male ARH1-KO mice. These results demonstrate that female ARH1-KO mice are more sensitive to cholera toxin than male mice. Loss of ARH1 confers gender sensitivity to the effects of cholera toxin but not of cyclic AMP. These observations may in part explain the finding noted in some clinical reports of enhanced symptoms of cholera and/or diarrhea in women than men. 3. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. Poly(ADP-ribosyl)ation refers to the covalent attachment of ADP-ribose to protein, generating branched, long chains of ADP-ribose moieties, known as poly(ADP-ribose) (PAR). Poly(ADP-ribose) polymerase 1 (PARP1) is the main polymerase and acceptor of PAR in response to DNA damage. Excessive intracellular PAR accumulation due to PARP1 activation leads cell death in a pathway known as parthanatos. PAR degradation is mainly controlled by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose-acceptor hydrolase 3 (ARH3). Our previous results demonstrated that ARH3 confers protection against hydrogen peroxide (H2O2) exposure, by lowering cytosolic and nuclear PAR levels and preventing apoptosis-inducing factor (AIF) nuclear translocation. We identified a family with an ARH3 gene mutation that resulted in a truncated, inactive protein. The 8-year-old proband exhibited a progressive neurodegeneration phenotype. In addition, parthanatos was observed in neurons of the patient's deceased sibling, and an older sibling exhibited a mild behavioral phenotype. Consistent with the previous findings, the patient's fibroblasts and ARH3-deficient mice were more sensitive, respectively, to H2O2 stress and cerebral ischemia/reperfusion-induced PAR accumulation and cell death. Further, PARP1 inhibition alleviated cell death and injury resulting from oxidative stress and ischemia/reperfusion. PARP1 inhibitors may attenuate the progression of neurodegeneration in affected patients with ARH3 deficiency. 4. Collabotative studies are ongoing with Michael Hottiger and In-Kwon Kim.
解释 单-ADP-核糖基化是一种翻译后蛋白质的修饰,其中ADP-核糖从NAD转移到受体氨基酸。它首先被鉴定为细菌疾病(例如霍乱,白喉和百日咳)中疾病发病机理的机制,其中毒素ADP-核糖基化临界调节和生物合成蛋白。哺乳动物组织具有模仿细菌毒素的酶促活性。然而,哺乳动物精氨酸特异性单ADP-核糖基化是对蛋白质的可逆修饰。 精氨酸特异性的单ADP-核糖基细胞(Arts)(例如ART1,ART5),将ADP-核糖从NAD转移到靶蛋白的NAD到精氨酸残基,ADP-核糖基亚氨基氨基水解酶1(ARH1)通过裂解ADP----核糖 - (精氨酸) - 蛋白质键。数据与ART和ARH1一致,ARH1用作精氨酸ADP-核糖基化周期的相对臂。 1。TRIM72是一种丰富的心脏和骨骼肌,在肺和肾上皮细胞中,它参与了膜修复。有效的膜修复可保护心肌细胞免受缺血损伤。需要急性修复TRIM72的寡聚,将TRIM72带到损伤部位。 TRIM72还应对缺血 - 重新灌注损伤引起的细胞损伤。 Caveolin-3(CAV-3)激活的磷脂酰肌醇-3-激酶(PI3K)依赖性再灌注损伤损伤分子激酶(风险)中的TRIM72在复合物中,从而增强了细胞存活率。 在复合物中发现了调节酶ART1和ARH1及其底物TRIM72,它们是从小鼠心脏裂解物中共免疫沉淀的。与TRIM72相关的复合物似乎相对异质,可以通过FPLC和HPLC解决。一些复合物包括CAV-3。据报道,TRIM72低聚是调节急性膜修复的关键机制。在WT小鼠中观察到的TRIM72的寡聚化在ARH1缺乏的心脏裂解物中被延迟,其中看到Trim72的二聚体而不是三聚体。 另外,在细胞水平上,损伤部位的TRIM72的寡聚需要单核-ADP-核糖基化循环,即ART1和ARH1。我们提出,涉及TRIM72募集和其他调节因子对膜损伤部位募集的单ADP-核糖基化周期对于心肌损伤后的膜修复和伤口愈合至关重要。 2。对雌性ADP-核糖素水解酶(ARH1)缺乏小鼠的霍乱毒素的敏感性增强。 霍乱毒素是一种84 kDa多聚体蛋白,是弧菌霍乱的主要毒力因子,它使用其亚基的ADP-核糖基转移酶活性来吸入宿主细胞。 ADP-核糖基化是蛋白质的翻译后修饰,其中NAD+的ADP-核糖部分转移到受体中。在哺乳动物细胞中,受体的ADP-核糖基化似乎是可逆的。 ADP-核糖基转移酶(ARTS)催化受体蛋白的修饰,ADP-核糖 - 受体受体水解酶(ARHS)裂解ADP-核糖 - 受体受体键。 ARH1专门切割ADP-核糖 - 精氨酸键。我们先前以前证明了内源性ARH1在调节小鼠中毒模型中霍乱毒素介导的液和电解质异常的作用。与它们的野生型(WT)相比,鼠ARH1-KNOCKOUT(KO)细胞和ARH1-KO小鼠对霍乱毒素的敏感性提高。在当前报告中,我们检查了对雄性和雌性ARH1-KO和WT小鼠霍乱毒素的敏感性。与雄性ARH1-KO小鼠相比,当注射霍乱毒素时,源自雌性ARH1-KO小鼠的肠环表现出液体的积累增加。 WT小鼠在液体积累,ADP-核糖基金素含量和ADP-核糖基GS水平上没有显示性别差异。注入8-溴训练营到肠环中也增加了液体的积累,但是,雌性和雄性小鼠或WT和KO小鼠之间没有显着差异。雌性ARH1-KO小鼠显示出比男性ARH1-KO小鼠的ADP-核糖基化GS蛋白更大,并且在整个肠和上皮细胞中增加了ADP-核糖基金素含量。这些结果表明,雌性ARH1-KO小鼠比雄性小鼠对霍乱毒素更敏感。 ARH1的丧失赋予性别敏感性对霍乱毒素的作用,但对环状AMP的影响却没有。这些观察结果可能部分解释了一些临床报道中指出的关于女性霍乱和/或腹泻症状增强的临床报道所指出的。 3。PARP1抑制减轻了ARH3缺陷小鼠和人类细胞的损伤。 聚(ADP-核糖基)ation是指ADP-核糖与蛋白质的共价附着,产生了分支的,长长的ADP-核糖部分的链,称为poly(adp-ribose)(PAR)。聚(ADP-核糖)聚合酶1(PARP1)是响应DNA损伤的主要聚合酶和受体。由于PARP1激活引起的细胞内PAR积累过多会导致在称为Parthanatos的途径中细胞死亡。 PAR降解主要由聚(ADP-核糖)糖脂酶(PARG)和ADP-ribose-受体水解酶3(ARH3)控制。我们先前的结果表明,ARH3通过降低胞质和核PAR水平并防止凋亡诱导因子(AIF)核易位来赋予对过氧化氢(H2O2)暴露的保护。我们确定了一个具有ARH3基因突变的家族,该家族导致截断,无活性蛋白。 8岁的证据表现出进行性神经退行性表型。此外,在患者已故的兄弟姐妹的神经元中观察到了parthanatos,较老的兄弟姐妹表现出轻度的行为表型。与先前的发现一致,患者的成纤维细胞和ARH3缺陷小鼠对H2O2胁迫和脑缺血/再灌注诱导的PAR积累和细胞死亡分别更为敏感。此外,PARP1抑制作用缓解了氧化应激和缺血/再灌注引起的细胞死亡和损伤。 PARP1抑制剂可能会减弱受影响的ARH3缺乏患者的神经退行性的进展。 4。与迈克尔·霍蒂格(Michael Hottiger)和恩克旺·金(In-Kwon Kim)进行的协作研究正在进行中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Moss其他文献

Joel Moss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Moss', 18)}}的其他基金

Adp-ribosylation Cycles
Adp-核糖基化循环
  • 批准号:
    6671691
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ADP-ribosylation Cycles
ADP-核糖基化循环
  • 批准号:
    7321530
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ADP-ribosylation Cycles
ADP-核糖基化循环
  • 批准号:
    8557900
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
Clinical and Translational Research
临床和转化研究
  • 批准号:
    8939865
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
Characterization of the Pathogenesis of Lymphangioleiomyomatosis (LAM)
淋巴管平滑肌瘤病 (LAM) 发病机制的特征
  • 批准号:
    8557920
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ADP-ribosylation Cycles
ADP-核糖基化循环
  • 批准号:
    8158015
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
CHARACTERIZATION OF THE PATHOGENESIS OF LYMPHANGIOLEIOMYOMATOSIS (LAM)
淋巴管平滑肌瘤病 (LAM) 发病机制的特征
  • 批准号:
    6290430
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ROLE OF NITRIC OXIDE IN THE PATHOGENESIS OF LUNG DISEASE
一氧化氮在肺部疾病发病机制中的作用
  • 批准号:
    6290428
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ROLE OF NITRIC OXIDE IN THE PATHOGENESIS OF LUNG DISEASE
一氧化氮在肺部疾病发病机制中的作用
  • 批准号:
    6432691
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:
ADP-ribosylation Cycles
ADP-核糖基化循环
  • 批准号:
    7154203
  • 财政年份:
  • 资助金额:
    $ 214.21万
  • 项目类别:

相似国自然基金

4-8岁儿童基于道德特征的选择性共情:发展及其机制
  • 批准号:
    32371111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于代谢组学的蒙古族7-8岁儿童蒙医体质与肠道菌群的相关性研究
  • 批准号:
    81960831
  • 批准年份:
    2019
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
基于转录组学技术的蒙古族7-8岁儿童三根体质分类研究
  • 批准号:
    81560739
  • 批准年份:
    2015
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
8-12岁注意缺陷与多动儿童发展障碍的改善:基于身体活动干预的探索与新证据
  • 批准号:
    31371046
  • 批准年份:
    2013
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目
8-14岁儿童算术认知发展的脑机制
  • 批准号:
    30870759
  • 批准年份:
    2008
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
Characterizing metabolic variability during pregnancy to understand pathways of in-utero overnutrition: an integrative analysis of metabolomics and lifestyle data
表征妊娠期间的代谢变异性以了解子宫内营养过剩的途径:代谢组学和生活方式数据的综合分析
  • 批准号:
    10913646
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
ShEEP Request for Particle Matrix ZetaView
ShEEP 请求粒子矩阵 ZetaView
  • 批准号:
    10741098
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
Trajectories of Regional Cardiopulmonary Structure and Function in A Longitudinal Cohort of Extremely Preterm Infants
极早产儿纵向队列的区域心肺结构和功能轨迹
  • 批准号:
    10656624
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
Identifying the Ideal Dose of Structured Summer Programming for Mitigating Accelerated Summer BMI Gain
确定结构化夏季计划的理想剂量,以缓解夏季体重指数加速增长
  • 批准号:
    10653609
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了