A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
基本信息
- 批准号:10035169
- 负责人:
- 金额:$ 53.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-23 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBehaviorBiologyChemistryCommunitiesCouplingDNADevelopmentDideoxy Chain Termination DNA SequencingElectrodesEncapsulatedEngravingsExposure toFailureGenomeGlassIndividualLabelLasersLengthLightLiquid ChromatographyMass ChromatographyMeasurementMeasuresMedicineMethodsNanostructuresNucleotidesOilsOligonucleotidesOpticsPatternPhasePhysiologic pulsePolystyrenesPositioning AttributeProcessProductionReactionReagentRefuse DisposalResearch PersonnelRunningSamplingSeriesSiteSolidSpottingsSurfaceSurface TensionSystemTechnologyTestingTimeTransportationWithdrawalWorkloadbasecostdesignelectric fieldgene productgene synthesislaser tweezernanonanophotonicnanoscalenoveloptical trapsplasmonicsqubitsynthetic biologytripolyphosphatewasting
项目摘要
Abstract
Long strand oligonucleotide synthesis continues to be limited by its diminishing returns, with a current maximum
length of ~ 250 bases. As a general rule, one of every 100 molecules will fail to couple, meaning that the average
synthesis run is said to have a coupling efficiency (CE) of 99%. The formula, CEn, where n is the number of
bases added during synthesis, states the longer the strand generated, the more failure strands will be produced.
For example, synthesis of a 40 base strand with a 99% CE will generate 68% full-length product (FLP) as
opposed to synthesis of a 200 base strand, which will yield 13% FLP with the same CE. While there are other
factors that may influence CE (i.e. synthesis parameters and quality of reagents), the main problem is inadequate
accessibility of reagent to each of the molecules on the surface of the solid substrate (i.e. polystyrene beads or
controlled-pore-glass). The most common case is when beads are packaged inside a column sandwiched
between two porous filters; here, stacking of beads causes reduced surface area exposure to synthesis reagents,
whereby DNA molecules become unreacted or only partially reacted. Moreover, spent reagents and unwanted
byproducts become trapped within the support and carry over into consecutive cycles, further contaminating the
synthesis run. To circumvent these limitations, we propose a novel method that allows us to control the actions
of an individual bead through dielectrophoresis on a plasmonic surface. Here, reactions are tuned to completely
encapsulate each bead with minimal volume reagent droplets for high-precision synthesis. Because each bead
is isolated in solution, byproducts cannot become trapped, and each has maximum contact with all synthesis
reagents; it is this intimate 1:1 ratio of bead to reagent that will significantly increase the base addition efficiency
allowing the production of ultra-long strands of DNA > 1000 bases. Until very recently, far-field optics (i.e. optical
tweezers) could not be applied at the nano-scale due to diffraction-limited focused spot size; therefore,
researchers began studying effects of plasmonic nanostructures where light waves are concentrated directly
onto the bead. In our platform, reagent droplets of precise volume and concentration are formed by pulsed laser
cavitation; droplets are then transported along the plasmonic surface to encapsulate individual beads by
overcoming surface tension barrier using dielectrophoretic forces generated by an AC electrical field. Thus, this
approach of encapsulating a bead into a droplet and pulling it out can be employed for a large range of droplet
and bead sizes with the appropriate electrode design. We believe the key to maximizing oligonucleotide purity
and yield during synthesis lies in determining the minimal volume/concentration of each reagent necessary to
coat the surface of an individual bead. With our proposed platform of synthesis on a plasmonic surface, we have
the capability to address each individual bead for an accurate, optimized ratio of bead to reagent droplet of
defined concentration. These developments are necessary to realize the full potential of synthetic biology, by
making large-scale projects accessible to the entire community that will fuel discoveries in genome biology and
medicine.
抽象的
长链寡核苷酸的合成继续受到其回报的减少的限制,电流最大
长度约250个基部。通常,每100个分子中的一个都不会夫妇,这意味着平均
据说合成运行的耦合效率为99%。公式,cen,其中n是
在合成过程中添加的碱基,指出产生的链的时间越长,产生故障链就会越多。
例如,具有99%CE的40个基本链的合成将产生68%的全长产品(FLP)作为
与合成200个碱基的合成相反,该链将产生13%的FLP,同一CE。虽然还有其他
可能影响CE的因素(即合成参数和试剂质量),主要问题是不足
试剂对固体底物表面上每个分子的可访问性(即聚苯乙烯珠或
受控的孔玻璃)。最常见的情况是何时将珠子包装在夹杂的列内
在两个多孔过滤器之间;在这里,堆叠珠会导致表面积降低暴露于合成试剂,
DNA分子未反应或仅部分反应。此外,花费的试剂和不必要的
副产品被困在支撑中,并将其延伸到连续的周期中,进一步污染了
合成运行。为了规避这些限制,我们提出了一种新颖的方法,使我们能够控制动作
单个珠通过等离子表面上的介电的珠子。在这里,反应被调整为完全
用最小的体积试剂液滴封装每个珠子,以进行高精度合成。因为每个珠子
在溶液中分离出来,副产品不能被困,并且每个副产品与所有合成都具有最大的接触
试剂;正是这种亲密的1:1珠子与试剂的比率将显着提高基本添加效率
允许产生超长的DNA> 1000碱基的链。直到最近,远场光学器件(即光学
由于衍射有限的聚焦点尺寸,无法在纳米尺度上应用镊子);所以,
研究人员开始研究直接浓缩光波的等离子体纳米结构的影响
到珠子上。在我们的平台中,通过脉冲激光形成精确体积和浓度的试剂液滴
空化;然后将液滴沿等离子体表面运输,以将单个珠子封装
使用AC电场产生的电介摄取力克服表面张力屏障。因此,这个
将珠子封装到液滴中并将其拔出的方法可以用于大量液滴
并具有适当的电极设计的珠子尺寸。我们相信最大化寡核苷酸纯度的关键
合成过程中的产量在于确定每种试剂的最小体积/浓度所必需的
涂上单个珠子的表面。我们提出的在等离子表面上的合成平台,我们有
解决每个单独的珠的能力,以获得精确,优化的珠子与试剂液滴的比率
定义的浓度。这些发展对于实现合成生物学的全部潜力是必要的
使整个社区可以访问大规模项目,以助长基因组生物学的发现和
药品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Wayne Davis其他文献
Ronald Wayne Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Wayne Davis', 18)}}的其他基金
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10705040 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10268193 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10460609 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10416027 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10159206 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:
Ultra high-throughput DNA synthesis via nano-optical conveyer belts
通过纳米光学传送带进行超高通量 DNA 合成
- 批准号:
9379771 - 财政年份:2017
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9340321 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
8702454 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9316665 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
MISINCORPORATION OF AMINO ACID ANALOGS IN SELECTED HUMAN AND MURINE PROTEINS
选定的人类和鼠类蛋白质中氨基酸类似物的错误掺入
- 批准号:
8365482 - 财政年份:2011
- 资助金额:
$ 53.03万 - 项目类别:
相似国自然基金
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
区域压缩对非线性噪声驱动的随机偏微分方程动力学行为影响的研究
- 批准号:12371178
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
长三角地区氯化石蜡的土壤—大气界面交换行为及区域环境影响研究
- 批准号:42307512
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向廊道式TOD(C-TOD)的巨型城市区域轨道交通对居民出行行为时空特征的影响机制研究
- 批准号:42201210
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
时间变区域上三类发展方程解的长时间动力学行为研究
- 批准号:12201142
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 53.03万 - 项目类别:
Impact VR: An Emotion Recognition and Regulation Training Program for Youth with Conduct Disorder
Impact VR:针对行为障碍青少年的情绪识别与调节培训项目
- 批准号:
10698855 - 财政年份:2023
- 资助金额:
$ 53.03万 - 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 53.03万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 53.03万 - 项目类别:
Intracranial Investigation of Neural Circuity Underlying Human Mood
人类情绪背后的神经回路的颅内研究
- 批准号:
10660355 - 财政年份:2023
- 资助金额:
$ 53.03万 - 项目类别: