Ultra high-throughput DNA synthesis via nano-optical conveyer belts
通过纳米光学传送带进行超高通量 DNA 合成
基本信息
- 批准号:9379771
- 负责人:
- 金额:$ 30.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-09 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAgricultureAutomationBiologyCaliberCleaved cellClinicalDNADNA SequenceDNA biosynthesisDNA sequencingDevelopmentDiploidyDiseaseElectrical EngineeringEngravingsEthicsGenerationsGenesGenetic VariationGenomeGenomic medicineGenomicsGuanine + Cytosine CompositionHazardous WasteHealthHuman GenomeHuman Genome ProjectIndividualIndustry StandardInvestigationLaboratoriesLasersLengthLightLightingLocationMethodsNucleotidesOligonucleotidesOpticsPhysiologic pulsePolystyrenesProductionPropertyReactionReagentRecording of previous eventsResearch PersonnelRunningSamplingSpeedSurfaceTechnologyTemperatureTestingTimeTo specifyWritingbasecostcost effectivecost effectivenessgene functiongenetic variantgenome editinginterestmeltingnanonanoparticlenoveloptical trapsphosphoramiditeplasmonicsprecision medicinequbitsocial implicationsynthetic biologysynthetic constructtoolvirtual
项目摘要
PROJECT SUMMARY
The ability to understand genome biology and the consequences of genetic variation on individual health
depends heavily on technologies that allow researchers to read and write DNA. Sequencing technologies
have recently seen dramatic improvements that have made personal genomes affordable for virtually any
laboratory and even directly available to consumers. Yet the corresponding DNA synthesis technologies lag
far behind these developments, causing a major hindrance in synthetic biology efforts to study genes,
variants, and genomes of interest by synthesizing them. This proposal aims to develop a novel DNA synthesis
technology to address the greatest challenge faced by current platforms: maintaining sufficient accuracy for
precision applications and throughput for large-scale applications while remaining cost-effective for
accessibility. To achieve this, the traditional phosphoramidite method of synthesizing DNA oligonucleotides
will be adapted onto nanoparticular beads, which will be moved through droplets containing synthesis
reagents along a plasmonic surface array. This `conveyer belt' will be optically controlled via C-shaped
engravings (CSEs) that concentrate light from below, serving as optical traps. In this way, the beads and
reagent droplets can be individually, rapidly transported to specific optical traps in multiple lanes simply by
changing the illumination wavelengths, allowing millions of unique oligonucleotides to be synthesized
simultaneously on a single array. By tailoring the reagent droplet size and concentration depending on
synthesis scale, the method will be optimized to target the entire bead surface, maximize yield, and eliminate
excess reagent usage. Quality will be assessed by testing synthesis of diverse DNA sequences. The main
advantages of this novel DNA synthesis platform will include: 1) faster reactions (cycle time 45 sec), 2) lower
error rate due to decreased acid exposure (<1:1000), 3) high yield (>5 attomoles/bead), 4) increased length of
oligonucleotides (>300 bases) due to cleaner synthesis, 6) significantly less hazardous waste production, 7)
generation of >25 million unique oligonucleotide sequences in a single run that can be individually isolated for
downstream applications, and 8) a cost of $0.0000001/base, two orders of magnitude less than the least
expensive method currently available. A DNA synthesis technology with these properties will enable
unprecedented genomic investigations, allowing researchers to test the functional and clinical impact of
thousands of genes and genetic variants.
项目概要
了解基因组生物学以及遗传变异对个人健康影响的能力
很大程度上依赖于研究人员能够读写 DNA 的技术。测序技术
最近看到了巨大的进步,使个人基因组几乎任何人都可以负担得起
实验室甚至直接提供给消费者。但相应的DNA合成技术却滞后
远远落后于这些发展,对合成生物学研究基因的努力造成重大阻碍,
通过合成它们来获得变体和感兴趣的基因组。该提案旨在开发一种新型 DNA 合成方法
技术来解决当前平台面临的最大挑战:保持足够的精度
精密应用和大规模应用的吞吐量,同时保持成本效益
可达性。为了实现这一点,合成DNA寡核苷酸的传统亚磷酰胺方法
将适应纳米颗粒,该颗粒将通过含有合成物的液滴移动
沿着等离子体表面阵列的试剂。该“传送带”将通过 C 形进行光学控制
雕刻(CSE)从下方聚集光线,充当光陷阱。这样,珠子和
只需通过
改变照明波长,可以合成数百万种独特的寡核苷酸
同时在单个阵列上。通过根据不同情况定制试剂液滴大小和浓度
合成规模,该方法将被优化以针对整个珠子表面,最大限度地提高产量,并消除
试剂使用过量。将通过测试不同 DNA 序列的合成来评估质量。主要
这种新型 DNA 合成平台的优点包括:1) 反应更快(循环时间 45 秒),2) 更低
由于酸暴露减少而导致错误率 (<1:1000),3) 高产量(>5 attomoles/珠),4) 增加长度
由于更清洁的合成,寡核苷酸(> 300 个碱基),6) 危险废物的产生显着减少,7)
单次运行生成超过 2500 万个独特的寡核苷酸序列,可以单独分离
下游应用,以及 8) 成本为 0.0000001 美元/基地,比最低成本低两个数量级
目前可用的方法昂贵。具有这些特性的 DNA 合成技术将使
前所未有的基因组研究,使研究人员能够测试其功能和临床影响
数以千计的基因和遗传变异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Wayne Davis其他文献
Ronald Wayne Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Wayne Davis', 18)}}的其他基金
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10705040 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10268193 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10460609 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10035169 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10416027 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10159206 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9340321 - 财政年份:2014
- 资助金额:
$ 30.19万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
8702454 - 财政年份:2014
- 资助金额:
$ 30.19万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9316665 - 财政年份:2014
- 资助金额:
$ 30.19万 - 项目类别:
MISINCORPORATION OF AMINO ACID ANALOGS IN SELECTED HUMAN AND MURINE PROTEINS
选定的人类和鼠类蛋白质中氨基酸类似物的错误掺入
- 批准号:
8365482 - 财政年份:2011
- 资助金额:
$ 30.19万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Male pesticide exposure, reproductive health and epigenetics
男性农药接触、生殖健康和表观遗传学
- 批准号:
10733537 - 财政年份:2023
- 资助金额:
$ 30.19万 - 项目类别:
Synthesis and quantitation of microcystins and anabaenopeptins in the Great Lakes region to establish human exposure risks via ingestion and inhalation
五大湖地区微囊藻毒素和鱼腥肽的合成和定量,以确定人类通过摄入和吸入接触的风险
- 批准号:
10660161 - 财政年份:2023
- 资助金额:
$ 30.19万 - 项目类别:
Microbiome Metabolite Valerobetaine: Mechanisms in Aging
微生物组代谢物戊甜菜碱:衰老机制
- 批准号:
10763615 - 财政年份:2023
- 资助金额:
$ 30.19万 - 项目类别:
Expanding the toolbox for tsetse control in Kenya
扩大肯尼亚采采蝇控制的工具箱
- 批准号:
10450231 - 财政年份:2022
- 资助金额:
$ 30.19万 - 项目类别:
Expanding the toolbox for tsetse control in Kenya
扩大肯尼亚采采蝇控制的工具箱
- 批准号:
10602508 - 财政年份:2022
- 资助金额:
$ 30.19万 - 项目类别: