Human genetics and molecular mechanisms of Vein of Galen aneurysmal malformation

Galen静脉动脉瘤畸形的人类遗传学和分子机制

基本信息

  • 批准号:
    10033009
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The genetic study of severe human congenital cerebrovascular anomalies can shed insight into mechanisms of normal vascular development and identify targets for therapeutic intervention. Vein of Galen aneurysmal malformations (VOGMs) are the most common and severe of pediatric brain arterio-venous malformations (AVMs). Significant gaps in our understanding of the molecular pathogenesis of VOGMs impede the development of improved diagnostic and therapeutic measures. Locus heterogeneity and the sporadic nature of VOGM cases have constituted fundamental obstacles to VOGM gene discovery. We recently applied whole exome sequencing (WES) to overcome these obstacles and identified de novo and inherited gene mutations that account for ~30% of sporadic VOGM cases (Duran et al., Neuron, 2019). These included a genome-wide significant burden of rare, damaging mutations in EPHB4 (EphB4), a critical regulator of arterio-venous specification also mutated in the familial AVM syndrome, capillary malformation (CM)-AVM type II (CM-AVM2). We also discovered new mutations in other genes that function in the same Ephrin signaling interactome, including RASA1 (also mutated in CM-AVM1). We further demonstrated that EphB4 exists in a physical complex with RASA1, and have now solved the first multi-domain crystal structure of RASA1. Nonetheless, most VOGM cases remain genetically unsolved, and the molecular mechanisms of VOGM-associated mutations are poorly understood. To address these knowledge gaps, we propose a functional genomics approach to discover and mechanistically elucidate VOGM-associated mutations with atomic-level resolution. We hypothesize WES will identify novel VOGM genes and mutations, including mosaic and somatic “second-hit” mutations, which disrupt the regulated activity of an EphB4-RASA1 signaling complex essential for arterio-venous development. Based on our successful experience in identifying structural brain disorder genes over the past several years, Aim 1 will ascertain additional VOGM case-parent trios and perform WES on our growing cohort (already the largest in the world) to discover novel de novo and transmitted germline VOGM gene mutations, mosaic variants, and somatic mutations in lesional tissue. In Aim 2, we will determine the structural and functional impact of VOGM mutations using biochemical, biophysical, structural biology and cell biology techniques, with validation experiments in autopsied VOGM tissue, and in skin biopsies of VOGM patients with associated cutaneous vascular malformations. Successful completion of these Aims will increase our understanding of human cerebrovascular development and VOGM pathophysiology. These advances will improve disease management and genetic counseling, and will stimulate development of targeted therapeutics for VOGMs that may be broadly relevant for other vascular lesions, including AVMs and intracranial aneurysms.
项目概要 对人类严重先天性脑血管异常的遗传学研究可以深入了解其机制 正常血管发育并确定盖伦静脉动脉瘤的治疗干预目标。 畸形(VOGM)是最常见和最严重的儿童脑动静脉畸形 (AVM)我们对 VOGM 分子发病机制的理解存在重大差距,阻碍了这一研究的进展。 开发改进的诊断和治疗措施。 VOGM 病例构成了 VOGM 基因发现的根本障碍。 外显子组测序(WES)克服了这些障碍并鉴定了从头突变和遗传性基因突变 约占散发性 VOGM 病例的 30%(Duran 等人,Neuron,2019)。 EPHB4 (EphB4) 中罕见的破坏性突变造成的重大负担,EPHB4 是动静脉的关键调节因子 该规范也在家族性 AVM 综合征、毛细血管畸形 (CM)-AVM II 型 (CM-AVM2) 中发生突变。 我们还发现了在同一 Ephrin 信号相互作用组中发挥作用的其他基因的新突变, 包括RASA1(也在CM-AVM1中突变)我们进一步证明了EphB4存在于物理中。 与RASA1形成复合体,目前已经解决了RASA1的第一个多域晶体结构。 大多数 VOGM 病例在遗传学上仍未得到解决,VOGM 相关的分子机制 为了解决这些知识空白,我们提出了功能基因组学。 方法以原子级分辨率发现并从机制上阐明 VOGM 相关突变。 我们值得 WES 将鉴定新的 VOGM 基因和突变,包括嵌合体和体细胞 “二次打击”突变,破坏 EphB4-RASA1 信号复合物的调节活性 基于我们在识别大脑结构方面的成功经验。 过去几年中的疾病基因,目标 1 将确定额外的 VOGM 病例-父母三重奏和 对我们不断增长的队列(已经是世界上最大的队列)进行 WES,以从头发现新奇的 In Aim 中传播了种系 VOGM 基因突变、镶嵌变异和体细胞突变。 2,我们将利用生物化学、生物物理、 结构生物学和细胞生物学技术,在尸检 VOGM 组织中进行验证实验,并在 成功完成伴有皮肤血管畸形的 VOGM 患者的皮肤活检。 这些目标将增加我们对人类脑血管发育和 VOGM 的理解 这些进步将改善疾病管理和遗传咨询,并将 刺激 VOGM 靶向疗法的开发,这些疗法可能与其他血管广泛相关 病变,包括动静脉畸形和颅内动脉瘤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Titus Jonathon Boggon其他文献

Titus Jonathon Boggon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Titus Jonathon Boggon', 18)}}的其他基金

LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
  • 批准号:
    10798525
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
  • 批准号:
    10443356
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
P21-activated kinases in cell-cell and cell-matrix adhesion signaling
细胞间和细胞基质粘附信号转导中的 P21 激活激酶
  • 批准号:
    10641867
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
P21-activated kinases in cell-cell and cell-matrix adhesion signaling
细胞间和细胞基质粘附信号转导中的 P21 激活激酶
  • 批准号:
    10436342
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
P21-activated kinases in cell-cell and cell-matrix adhesion signaling
细胞间和细胞基质粘附信号转导中的 P21 激活激酶
  • 批准号:
    10025961
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
P21-activated kinases in cell-cell and cell-matrix adhesion signaling
细胞间和细胞基质粘附信号转导中的 P21 激活激酶
  • 批准号:
    10250504
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
Human Genetics and Molecular Mechanisms of Vein of Galen Aneurysmal Malformation
Galen 动脉瘤畸形静脉的人类遗传学和分子机制
  • 批准号:
    10673038
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
The function of MEKK3 interaction with CCM2
MEKK3与CCM2相互作用的功能
  • 批准号:
    9033126
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
The function of MEKK3 interaction with CCM2
MEKK3与CCM2相互作用的功能
  • 批准号:
    8863345
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
Investigating cellular function and biochemical mechanism for STK24-CCM3 complex
研究 STK24-CCM3 复合物的细胞功能和生化机制
  • 批准号:
    9020243
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:

相似海外基金

Human Genetics and Molecular Mechanisms of Vein of Galen Aneurysmal Malformation
Galen 动脉瘤畸形静脉的人类遗传学和分子机制
  • 批准号:
    10673038
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
TGF-beta polymorphisms and breast cancer in families
TGF-β 多态性与家族乳腺癌
  • 批准号:
    8134311
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
TGF-beta polymorphisms and breast cancer in families
TGF-β 多态性与家族乳腺癌
  • 批准号:
    8301717
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
TGF-beta polymorphisms and breast cancer in families
TGF-β 多态性与家族乳腺癌
  • 批准号:
    8520198
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
TGF-beta polymorphisms and breast cancer in families
TGF-β 多态性与家族乳腺癌
  • 批准号:
    7785249
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了