4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
基本信息
- 批准号:10007275
- 负责人:
- 金额:$ 68.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:4D ImagingAcousticsAdultBehavior DisordersBehavioralBrainBrain MappingBrain imagingBrain regionCerebrovascular CirculationDiagnosisDiseaseElectricityElectrodesElectroencephalographyElectrophysiology (science)ElementsEngineeringEpilepsyEquipmentEvoked PotentialsExcisionFamily suidaeFocused UltrasoundFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHeadHumanImageImaging DeviceInterventionIntractable EpilepsyMapsMeasuresMechanicsMental DepressionMental disordersModalityModelingMonitorMotionNeurologicNeuronavigationNeuronsNeurosciencesNoiseOperative Surgical ProceduresOutcomeParkinson DiseasePatientsPerformancePhysiologic pulsePhysiologicalPositioning AttributePositron-Emission TomographyPsychologistResolutionScanningSeizuresSensorySignal TransductionSomatosensory Evoked PotentialsSpeedStructureSurfaceSystemTechnologyThalamic structureTimeUltrasonic TransducerUltrasonographyValidationVisionbrain volumecraniumdata acquisitiondensityhealthy volunteerhigh resolution imaginghuman subjectimagerimaging platformimprovedin vivomobile computingmultidisciplinarynervous system disordernext generationnovelprototyperadio frequencyrelating to nervous systemsensortemporal measurement
项目摘要
ABSTRACT
The overarching goal of this project is to optimize, validate and implement a revolutionary and safe modality
for noninvasive functional imaging of neural currents deep in the human brain through the skull at
unprecedented spatial and temporal resolution. Transcranial Acoustoelectric Brain Imaging (tABI) is a
disruptive technology that exploits pulses of ultrasound (US) to transiently interact with physiologic current,
producing a radiofrequency (RF) signature detected by one or more sensors (e.g., surface electrodes). By
rapidly sweeping the US beam and simultaneously detecting these RF modulations, 4D high resolution current
density maps are generated. This approach overcomes limitations with electroencephalography (EEG), which
suffers from poor spatial resolution and inaccuracies due to blurring of electrical signals as they pass through
the brain and skull, and, unlike fMRI and PET that measure slow “intrinsic” signals, tABI directly maps fast
time-varying current within a defined brain volume at the mm and ms scales. As a disruptive and scalable
modality for noninvasive human brain imaging, tABI offers the following benefits: 1) High spatial resolution
determined by the US focus (e.g., 0.3 – 3 mm); 2) Real-time, volumetric imaging of local field potentials and
evoked activity; 3) 4D imaging of neural currents from deep brain structures without assuming the
conductivity distribution; and 4) Co-registration of neural currents (tABI) with brain structure, motion (pulse
echo US) and cerebral blood flow (Doppler). Our multidisciplinary team of engineers, physicists,
neuroscientists, psychologists, and imagers will overcome the primary challenge of detecting weak interaction
signals through skull at safe US intensities. To demonstrate tABI as a safe and reliable modality for electrical
brain imaging at the mm and ms scales in healthy volunteers, we propose to 1) Optimize, calibrate, and
validate tABI using established human head and in vivo swine models; 2) Develop and validate the first tABI
platform for functional brain imaging in human subjects; 2a) Assess extraoperative tABI for mapping patients
with intractable epilepsy referred for surgery; and 2b) Assess tABI for mapping somatotopic organization in
healthy volunteers. If successful, this project will deliver a safe, revolutionary and mobile technology for
noninvasive human brain imaging with the goal of transforming our understanding of brain function and help
diagnose, stage, monitor and treat a wide variety of neurologic (e.g., epilepsy, Parkinson’s), psychiatric (e.g.,
depression) and behavioral (e.g., OCD) disorders.
抽象的
该项目的总体目标是优化、验证和实施革命性的安全模式
用于通过颅骨对人脑深处的神经电流进行无创功能成像
经颅声电脑成像 (tABI) 是一种前所未有的空间和时间分辨率。
利用超声波(US)脉冲与生理电流瞬时相互作用的颠覆性技术,
产生由一个或多个传感器(例如表面电极)检测到的射频 (RF) 特征。
快速扫描 US 光束并同时检测这些 RF 调制、4D 高分辨率电流
这种方法克服了脑电图 (EEG) 的局限性。
由于电信号通过时模糊,空间分辨率差且不准确
与测量慢速“内在”信号的 fMRI 和 PET 不同,tABI 可以直接快速绘制地图
在毫米和毫秒尺度上定义的大脑体积内随时间变化的电流作为一种破坏性和可扩展性。
作为非侵入性人脑成像方式,tABI 具有以下优点:1) 高空间分辨率
由 US 焦点确定(例如 0.3 – 3 mm);2) 局部场电位的实时体积成像和
3) 大脑深层结构神经电流的 4D 成像,无需假设
电导率分布;4) 神经电流 (tABI) 与大脑结构、运动(脉冲)的共同配准
echo US)和脑血流(多普勒)。我们的多学科团队由工程师、物理学家组成,
神经科学家、心理学家和成像师将克服检测弱相互作用的主要挑战
以安全的美国强度通过颅骨发出信号,以证明 tABI 是一种安全可靠的电模式。
在健康志愿者中进行 mm 和 ms 尺度的脑成像,我们建议 1) 优化、校准和
使用已建立的人体头部和体内猪模型验证 tABI;2) 开发并验证第一个 tABI;
人类受试者功能性脑成像平台;2a) 评估术前 tABI 以绘制患者图谱
患有难治性癫痫转诊进行手术;和 2b) 评估 tABI 以绘制躯体组织图
如果成功,该项目将为健康的志愿者提供安全、革命性的移动技术。
无创人脑成像,旨在改变我们对大脑功能的理解并提供帮助
诊断、分期、监测和治疗各种神经疾病(例如癫痫、帕金森病)、精神疾病(例如
抑郁症)和行为障碍(例如强迫症)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell S Witte其他文献
IVUS beyond the horizon.
IVUS 超出地平线。
- DOI:
10.4244/eijv2i1a23 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. V. D. van der Steen;R. Baldewsing;F. Levent Degertekin;S. Emelianov;M. Frijlink;Yuji Furukawa;David E. Goertz;Mustafa Karaman;P. Khuri;Kang Kim;F. Mastik;T. Moriya;O. Oralkan;Y. Saijo;J. Schaar;P. Serruys;S. Sethuraman;A. Tanaka;H. Vos;Russell S Witte;Matthew O’Donnell - 通讯作者:
Matthew O’Donnell
Russell S Witte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell S Witte', 18)}}的其他基金
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10266774 - 财政年份:2020
- 资助金额:
$ 68.81万 - 项目类别:
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10468182 - 财政年份:2020
- 资助金额:
$ 68.81万 - 项目类别:
High resolution electrical brain mapping by real-time and portable 4D Acoustoelectric Imaging
通过实时便携式 4D 声电成像进行高分辨率脑电图绘制
- 批准号:
9036787 - 财政年份:2015
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7740997 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8257070 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8053916 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7881529 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
- 批准号:
10662754 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Vital capacity & airflow measurement for voice evaluation: A vortex whistle system
肺活量
- 批准号:
10737248 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别: