High resolution electrical brain mapping by real-time and portable 4D Acoustoelectric Imaging
通过实时便携式 4D 声电成像进行高分辨率脑电图绘制
基本信息
- 批准号:9036787
- 负责人:
- 金额:$ 36.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAddressAdultBehavior DisordersBlood flowBrainBrain MappingBrain imagingChronicCollaborationsCustomDetectionDiagnosisDistantElectrocardiogramElectrodesElectroencephalographyElectrophysiology (science)Emergency MedicineEngineering PsychologyEnsureEpilepsyEvaluationEvoked PotentialsExposure toFamily suidaeFocused UltrasoundFrequenciesFutureGoalsGoldHeadHippocampus (Brain)HumanImageIndustryInstitutionInternationalLifeMapsMathematicsMeasuresMedical ImagingMental DepressionMental disordersMethodsModelingMonitorMotor CortexNeonatalNeurologicNoisePenetrationPhysiologic pulsePhysiologicalPreparationProcessPsychologyRattusResolutionRestSafetyScanningSeizuresSignal TransductionSite VisitSourceStagingStrategic PlanningStructureSystemTechnologyTestingThickTimeTissuesTranslationsTraumatic Brain InjuryUltrasonographyValidationVisionbasebonecraniumdensitydesignimaging platformimprovedimproved functioningin vivoinnovationmeetingsmultidisciplinaryneonatal hypoxic-ischemic brain injurynervous system disorderneurosurgerynovelpatient safetyperformance testspoint of carepre-clinicalpublic health relevancerelating to nervous systemsocialtooltransmission processvoltage
项目摘要
DESCRIPTION (provided by applicant): Our vision is to develop the first noninvasive, real-time and portable electrical brain mapping system based on disruptive acoustoelectric (AE) technology. Our goal is to overcome limitations with functional brain imaging and electroencephalography (EEG), which suffers from poor resolution and inaccuracies due to the blurring of electrical signals as they pass through the brain and skull. Acoustoelectric Brain Imaging (ABI) implements pulsed ultrasound (US) to transiently modulate local tissue resistivity. As the US interacts with neural currents, a voltage modulation ("AE signal") is generated at the US frequency and detected by a distant electrode. This AE signal is proportional to the local current density and spatially confined to the US focus. By rapidly scanning a focused US beam in the brain and detecting the modulation signals, 4D ABI could achieve accurate, real-time, volumetric images of current densities through the adult human skull with a resolution near 1 mm3. Before transcranial ABI can be safely and effectively employed as a tool for functional human brain imaging, several major obstacles must be overcome. The greatest challenge is detecting the weak AE interaction signal through the skull, while maintaining safe US exposure to the head and brain. We, therefore, propose several strategies to dramatically enhance detection of the AE signal by a factor of 10 or more without compromising patient safety. Through a careful team-oriented planning process, we will design and develop the first ABI platform for evaluation and optimization in a realistic head phantom and, later, performance testing in living rat and pig brains. To address these and other challenges, we propose to 1) Develop the first-of-its-kind US delivery system capable of transcranial ABI; 2) Devise methods to dramatically improve detection of the AE signal through bone and define parameters for safe ultrasound delivery; 3) Apply ABI to map and oscillations in rat brain with validation usin standard electrophysiology; and 4) Apply and optimize ABI in pig brain (resting-state oscillations, evoked potentials, and induced seizures) compared with gold standard EEG. These aims interweave technology, innovation, modeling, and translation to overcome major obstacles in developing transcranial ABI for humans. They will be embedded in an interactive planning process that brings together wide-ranging ideas, challenging questions, and multidisciplinary expertise in medical imaging, ultrasound technology, neuroengineering, neurosurgery, neuroelectrophysiology, mathematics, psychology, and emergency medicine. The planning process will not only implement face-to-face meetings and site visits, but also social media (ABI.curiosityforall.org) and teleconferencing tools to maximize interaction, facilitate strategic planning, address safety issues, and overcome the Grand Brain Challenge posed by the skull. The project also establishes new collaborations with thought leaders at multiple institutions and industry to consider plans for point-of-care ABI in diverse settings. A safe, portable, and real-time platform designed for humans could transform our understanding of normal brain function and improve management (diagnose, stage, monitor, treat) of a wide variety of neurologic, psychiatric and behavioral disorders (e.g., epilepsy, depression, OCD).
描述(由申请人提供):我们的愿景是开发第一个基于破坏性声电(AE)技术的无创、实时和便携式脑电图系统。我们的目标是克服功能性脑成像和脑电图(EEG)的局限性。由于电信号在通过大脑和颅骨时变得模糊,因此分辨率差且不准确。声电脑成像 (ABI) 采用脉冲超声 (US) 来瞬时调制局部。当 US 与神经电流相互作用时,会在 US 频率下生成电压调制(“AE 信号”),并由远处的电极检测到。该 AE 信号与局部电流密度成正比,并且在空间上仅限于 US 焦点。通过快速扫描大脑中的聚焦超声束并检测调制信号,4D ABI 可以通过成人颅骨获得准确、实时的电流密度图像,其分辨率接近 1 mm3。要想安全有效地用作功能性人脑成像工具,必须克服几个主要障碍,即通过头骨检测微弱的 AE 相互作用信号,同时保持头部和大脑的安全暴露。 ,提出了几种策略,可在不影响患者安全的情况下将 AE 信号的检测显着增强 10 倍或更多。通过以团队为导向的仔细规划流程,我们将设计和开发第一个 ABI 平台,用于在现实头部中进行评估和优化。幻影和后来的性能测试为了解决这些和其他挑战,我们建议 1) 开发美国首个能够进行经颅 ABI 的传递系统;2) 设计方法来显着改善通过骨骼和猪脑的 AE 信号检测。定义安全超声传输的参数;3) 应用 ABI 绘制大鼠大脑中的 和 振荡图,并使用标准电生理学进行验证;以及 4) 在猪大脑中应用和优化 ABI(静息状态)与金标准脑电图相比,这些目标将技术、创新、建模和转化结合在一起,以克服开发人类经颅 ABI 的主要障碍。 -医学影像、超声技术、神经工程、神经外科、神经电生理学、数学、心理学和急诊医学方面的广泛想法、具有挑战性的问题和多学科专业知识规划过程将不仅仅实施面对面的。会议和现场访问,还有社交媒体 (ABI.curiosityforall.org) 和电话会议工具,以最大限度地提高互动、促进战略规划、解决安全问题并克服头骨带来的大脑挑战。该项目还与思想建立了新的合作。多个机构和行业的领导者正在考虑在不同环境中实施即时 ABI 的计划。一个专为人类设计的安全、便携式和实时平台可以改变我们对正常大脑功能的理解并改善管理(诊断、分期、监测)。 ,对待)的各种神经、精神和行为障碍(例如癫痫、抑郁症、强迫症)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell S Witte其他文献
IVUS beyond the horizon.
IVUS 超出地平线。
- DOI:
10.4244/eijv2i1a23 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. V. D. van der Steen;R. Baldewsing;F. Levent Degertekin;S. Emelianov;M. Frijlink;Yuji Furukawa;David E. Goertz;Mustafa Karaman;P. Khuri;Kang Kim;F. Mastik;T. Moriya;O. Oralkan;Y. Saijo;J. Schaar;P. Serruys;S. Sethuraman;A. Tanaka;H. Vos;Russell S Witte;Matthew O’Donnell - 通讯作者:
Matthew O’Donnell
Russell S Witte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell S Witte', 18)}}的其他基金
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10266774 - 财政年份:2020
- 资助金额:
$ 36.56万 - 项目类别:
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10007275 - 财政年份:2020
- 资助金额:
$ 36.56万 - 项目类别:
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10468182 - 财政年份:2020
- 资助金额:
$ 36.56万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7740997 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8257070 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8053916 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7881529 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 36.56万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 36.56万 - 项目类别:
Anti-Inflammatory Roles and Macrophage Metabolism of Lactate and Ketones during Myocardial Infarction
心肌梗死期间乳酸和酮的抗炎作用和巨噬细胞代谢
- 批准号:
10736579 - 财政年份:2023
- 资助金额:
$ 36.56万 - 项目类别:
Probing silent cerebral infarct pathogenesis in sickle cell disease with cerebrovascular MRI
脑血管MRI探讨镰状细胞病无症状脑梗死发病机制
- 批准号:
10798118 - 财政年份:2022
- 资助金额:
$ 36.56万 - 项目类别:
4D Multimodal Image-Based Modeling for Bicuspid Aortic Valve Repair Surgery
二叶式主动脉瓣修复手术的 4D 多模态基于图像的建模
- 批准号:
10420584 - 财政年份:2022
- 资助金额:
$ 36.56万 - 项目类别: