ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
基本信息
- 批准号:10023935
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnatomic ModelsAnatomyApplied ResearchAreaBig DataBindingBiologicalBiological SciencesBiological TestingBiologyBiomedical ResearchCardiologyClinicalClinical ResearchClinical TrialsCommunitiesComplexComplex AnalysisComputer softwareComputersConsensusDataData SetDevelopmentDimensionsElectronic MailEnsureExhibitsFaceFundingFutureGoalsImageInterdisciplinary StudyLaboratory ResearchLanguageLearningLicensingMachine LearningMaintenanceManualsMathematicsMeasuresMedicalMedicineMemoryMethodsModelingModernizationModificationMorphologyNormalcyOperative Surgical ProceduresOrthopedicsPhenotypePopulationProcessProgramming LanguagesPsychologyReconstructive Surgical ProceduresReproducibilityResearchResearch PersonnelScientistShapesSoftware EngineeringSoftware ToolsStatistical Data InterpretationSupervisionTechniquesTechnologyTestingTimeWorkautomated segmentationbaseclinical applicationclinical careclinical investigationcohortcommercializationcomputerized toolscostdesignexperienceflexibilityimaging Segmentationimprovedinnovationinterestinteroperabilitymedical implantopen sourceoutreachparticlepatient populationreconstructionresearch and developmentshape analysissoftware developmentstatisticstoolusabilityuser-friendly
项目摘要
Project Summary
The morphology (or shape) of anatomical structures forms the common language among clinicians, where ab-
normalities in anatomical shapes are often tied to deleterious function. While these observations are often quali-
tative, finding subtle, quantitative shape effects requires the application of mathematics, statistics, and computing
to parse the anatomy into a numerical representation that will facilitate testing of biologically relevant hypotheses.
Particle-based shape modeling (PSM) and its associated suite of software tools, ShapeWorks, enable learning
population-level shape representation via automatic dense placement of homologous landmarks on image seg-
mentations of general anatomy with arbitrary topology. The utility of ShapeWorks has been demonstrated in a
range of biomedical applications. Despite its obvious utility for the research enterprise and highly permissive
open-source license, ShapeWorks does not have a viable commercialization path due to the inherent trade-off
between development and maintenance costs, and a specialized scientific and clinical market. ShapeWorks has
the potential to transform the way researchers approach studies of anatomical forms, but its widespread ap-
plicability to medicine and biology is hindered by several barriers that most existing shape modeling packages
face. The most important roadblocks are (1) the complexity and steep learning curve of existing shape modeling
pipelines and their increased computational and computer memory requirements; (2) the considerable expertise,
time, and effort required to segment anatomies of interest for statistical analyses; and (3) the lack of interoperable
implementations that can be readily incorporated into biomedical research laboratories. In this project, we pro-
pose ShapeWorksStudio, a software suite that leverages ShapeWorks for the automated population-/patient-level
modeling of anatomical shapes, and Seg3D – a widely used open-source tool to visualize and process volumet-
ric images – for flexible manual/semiautomatic segmentation and interactive manual correction of segmented
anatomy. In Aim 1, we will integrate ShapeWorks and Seg3D in a framework that supports big data cohorts to
enable users to transparently proceed from image data to shape models in a straightforward manner. In Aim 2,
we will endow Seg3D with a machine learning approach that provides automated segmentations within a statisti-
cal framework that combines image data with population-specific shape priors provided by ShapeWorks. In Aim
3, we will support interoperability with existing open-source software packages and toolkits, and provide bindings
to commonly used programming languages in the biomedical research community. To promote reproducibility,
we will develop and disseminate standard workflows and domain-specific test cases. This project combines an
interdisciplinary research and development team with decades of experience in statistical analysis and image
understanding, and application scientists to confirm that the proposed developments have a real impact on the
biomedical and clinical research communities. Our long-term goal is to make ShapeWorks a standard tool for
shape analyses in medicine, and the work proposed herein will establish the groundwork for achieving this goal.
项目概要
解剖结构的形态(或形状)形成了信徒之间的共同语言,其中 ab-
解剖形状的正常性通常与有害的功能有关,而这些观察结果通常是合格的。
假设,寻找微妙的、定量的形状效应需要应用数学、统计学和计算
将解剖结构解析为数字表示,这将有助于测试生物学相关的假设。
基于粒子的形状建模 (PSM) 及其相关软件工具套件 ShapeWorks 支持学习
通过在图像片段上自动密集放置同源地标来实现群体级别的形状表示
ShapeWorks 的实用性已在
尽管它对研究企业有明显的实用性并且高度许可。
开源许可证,由于固有的权衡,ShapeWorks 没有可行的商业化路径
开发和维护成本之间的平衡,以及专门的科学和临床市场。
其具有改变研究人员进行解剖形式研究的方式的潜力,但其广泛应用
医学和生物学的适用性受到大多数现有形状建模包的几个障碍的阻碍
最重要的障碍是(1)现有形状建模的复杂性和学习曲线陡峭。
(2) 丰富的专业知识,
分割感兴趣的解剖结构以进行统计分析所需的时间和精力;(3) 缺乏可互操作性;
在这个项目中,我们支持可以轻松纳入生物医学研究实验室的实施。
ShapeWorksStudio,一个利用 ShapeWorks 实现人群/患者级别自动化的软件套件
解剖形状建模和 Seg3D(一种广泛使用的开源工具,用于可视化和处理体积)
ric 图像 – 用于灵活的手动/半自动分割和分段的交互式手动校正
在目标 1 中,我们将把 ShapeWorks 和 Seg3D 集成到一个支持大数据队列的框架中。
使用户能够以简单的方式透明地从图像数据转换为形状模型。
我们将赋予 Seg3D 一种机器学习方法,该方法可以在统计数据中提供自动分割
cal 框架,将图像数据与 ShapeWorks 提供的特定人群形状先验相结合。
3、我们将支持与现有开源软件包和工具包的互操作性,并提供绑定
生物医学研究界常用的编程语言,以提高可重复性,
我们将开发和传播标准工作流程和特定领域的测试用例。
拥有数十年统计分析和图像经验的跨学科研发团队
理解和应用科学家确认所提出的发展对
我们的长期目标是使 ShapeWorks 成为生物医学和临床研究社区的标准工具。
医学中的形状分析,本文提出的工作将为实现这一目标奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shireen Youssef Elhabian其他文献
Shireen Youssef Elhabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shireen Youssef Elhabian', 18)}}的其他基金
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
- 批准号:
10171789 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
- 批准号:
10646213 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
- 批准号:
9803774 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Two-for-one Stroke Thrombectomy: A novel Dual DAC to enhance navigability, lumen size, aspiration efficiency, and persistent flow arrest in mechanical thrombectomy
二合一中风血栓切除术:一种新型双 DAC,可增强机械血栓切除术中的导航性、管腔尺寸、抽吸效率和持续流动停止
- 批准号:
10698538 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Statistical models for the integrative analysis of complex biomedical images with manifold structure
具有流形结构的复杂生物医学图像综合分析的统计模型
- 批准号:
10590469 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10412769 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
- 批准号:
10171789 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别: