The Arsenic Stress Signaling Code of Yeast
酵母的砷应激信号编码
基本信息
- 批准号:10024658
- 负责人:
- 金额:$ 43.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AirArsenatesArsenicArsenicalsArsenitesBindingBiochemicalCardiovascular DiseasesCell membraneCell surfaceCellsCellular Metabolic ProcessChronicCodeCysteineDiabetes MellitusDiseaseEnvironmentEnzymesEventEvolutionExposure toFoodFood ContaminationGeneticGlycerolHealthHypertensionIronLeadMAP Kinase GeneMEKKsMEKsMalignant NeoplasmsMammalsMetabolicMetabolic BiotransformationMetabolismModelingModificationMolecularNatureOsmolar ConcentrationOsmotic ShocksOutputOxidative RegulationOxidative StressPathway interactionsPost-Translational Protein ProcessingProductionProtein KinaseProtein Tyrosine PhosphataseProtein phosphataseProteinsReactive Oxygen SpeciesRegulationReplication InitiationRoleRouteSignal TransductionSignaling MoleculeSourceSpecificityStressSubstrate SpecificitySulfhydryl CompoundsTestingToxic effectToxinTyrosineWaterYeastsanthropogenesisaqueousbasebehavior influencebiological adaptation to stresscancer therapycancer typecarcinogenicitycell behaviorchemotherapeutic agenteffective therapyexposed human populationground waterinorganic phosphateinterestnervous system disordernovelnovel strategiesprotein activationprotein functionresponsestress activated protein kinasestressor
项目摘要
Project Summary
Arsenic is the most prevalent toxin in the environment. This natural metalloid enters the biosphere from
geochemical sources and, to a lesser degree, from anthropogenic sources. Human exposure to arsenic is
mainly through food, water and air, and contamination of groundwater poses a worldwide health problem.
Inorganic aqueous arsenic exists mainly as oxyanions of trivalent arsenite [As(III)] and pentavalent arsenate
[As(V)]. As(V) is much less toxic than As(III), which is thiol reactive and binds covalently to cysteine residues in
proteins. Chronic exposure to inorganic arsenic is associated with cardiovascular disease and hypertension,
diabetes mellitus, neurological disorders, and various forms of cancer. It has been proposed that both direct
modification of biomolecules by As(III) and reactive oxygen species (ROS) generated by arsenicals are
responsible for its toxicity and carcinogenicity. Despite these health effects, As(III) is used as a highly effective
treatment for certain types of cancers. Therefore, it is important to understand the cellular responses mobilized
by arsenic-induced stress. Both As(V) and As(III) exposure stimulate the yeast stress-activated MAPK (SAPK)
Hog1, whose activity is critically important for the cellular response to arsenic. We are interested in two general
questions. First, how do diverse stressors activate a small number of SAPKs? We have found that many
stressors activate yeast SAPKs by intracellular routes that interface with SAPK pathways in atypical ways,
rather than signaling from the cell surface, which may influence the behavior of the SAPK. Second, how does
the cell mobilize coherent, stress-specific outputs from an activated SAPK? This proposal centers on the
cellular responses to arsenic exposure. We have developed evidence that both As(III) and its methylated
metabolite, MAs(III), are important signaling molecules that allow cells to mobilize protective, stress-specific
responses through modification of specific cysteine residues in target proteins. We refer to this as an arsenic
stress signaling code. Aim1 extends our recent findings that cells respond differently to As(V) and As(III)
exposure. We propose to understand the mechanistic bases of distinct regulatory events driven by these
stressors. We will identify key targets of arsenic modification for the regulation of the glycerol channel Fps1
[the major port of entry for As(III)], and test the role of newly discovered arsenic modifications of proteins
involved in the regulation of the oxidative stress response and replication initiation. Aim 2 is to understand how
Hog1 activated by As(III) drives stress-specific outputs. This aim extends our recent finding that Hog1 itself is
modified by arsenic and that this modification is important for its role in the response to As(III). Using mass
spectral approaches, we will determine the Hog1 phosphorylome in response to As(III) and As(V) and establish
whether Hog1 target specificity is altered by arsenylation. Aim 3 is to delineate the novel pathway by which
As(V) activates Hog1 and to determine its significance for As(V) entry to cells. Completion of these aims will
establish a novel paradigm centered on the regulatory nature of protein arsenylation.
项目概要
砷是环境中最普遍的毒素。这种天然准金属进入生物圈是从
地球化学来源,以及较小程度的人为来源。人体接触砷的量是
主要通过食物、水和空气传播,地下水污染构成了世界范围的健康问题。
无机砷水溶液主要以三价亚砷酸盐[As(III)]和五价砷酸盐的氧阴离子形式存在
[As(V)]。 As(V) 的毒性比 As(III) 低得多,As(III) 具有硫醇反应性,并与其中的半胱氨酸残基共价结合。
蛋白质。长期接触无机砷与心血管疾病和高血压有关,
糖尿病、神经系统疾病和各种癌症。建议双方直接
As(III) 和砷产生的活性氧 (ROS) 对生物分子的修饰是
造成其毒性和致癌性。尽管存在这些健康影响,As(III) 仍被用作高效的
治疗某些类型的癌症。因此,了解动员的细胞反应非常重要
由砷引起的应力。 As(V) 和 As(III) 暴露都会刺激酵母应激激活的 MAPK (SAPK)
Hog1,其活性对于细胞对砷的反应至关重要。我们对两个一般感兴趣
问题。首先,不同的压力源如何激活少量 SAPK?我们发现很多
应激源通过细胞内途径激活酵母 SAPK,这些途径以非典型方式与 SAPK 途径相互作用,
而不是来自细胞表面的信号传导,这可能会影响 SAPK 的行为。二、如何
细胞从激活的 SAPK 中调动连贯的、针对应激的输出?该提案的核心是
细胞对砷暴露的反应。我们已经开发出证据表明 As(III) 及其甲基化
代谢物 MAs(III) 是重要的信号分子,可让细胞调动保护性、应激特异性
通过修饰靶蛋白中的特定半胱氨酸残基来响应。我们称其为砷
压力信号代码。 Aim1 扩展了我们最近的发现,即细胞对 As(V) 和 As(III) 的反应不同
接触。我们建议了解由这些因素驱动的不同监管事件的机制基础
压力源。我们将确定砷修饰的关键靶点以调节甘油通道 Fps1
[As(III) 的主要进入口],并测试新发现的蛋白质砷修饰的作用
参与氧化应激反应和复制启动的调节。目标 2 是了解如何
As(III) 激活的 Hog1 可驱动特定压力的输出。这一目标扩展了我们最近的发现,即 Hog1 本身是
被砷修饰,并且这种修饰对于其在 As(III) 响应中的作用很重要。使用质量
光谱方法,我们将确定 Hog1 磷酰基响应 As(III) 和 As(V) 并建立
Hog1 靶标特异性是否会因砷化而改变。目标 3 是描绘新途径
As(V) 激活 Hog1 并确定其对于 As(V) 进入细胞的重要性。完成这些目标将
建立一个以蛋白质砷化的调控性质为中心的新范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID E. LEVIN其他文献
DAVID E. LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID E. LEVIN', 18)}}的其他基金
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8650290 - 财政年份:2012
- 资助金额:
$ 43.89万 - 项目类别:
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8842660 - 财政年份:2012
- 资助金额:
$ 43.89万 - 项目类别:
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8339240 - 财政年份:2012
- 资助金额:
$ 43.89万 - 项目类别:
Control of Transcriptional Attenuation of Stress-induced Genes in Yeast
酵母中应激诱导基因转录减弱的控制
- 批准号:
8514017 - 财政年份:2012
- 资助金额:
$ 43.89万 - 项目类别:
A SCREEN FOR NOVEL MPK1 KINASE DOMAIN BINDING PROTEINS
新型 MPK1 激酶结构域结合蛋白的筛选
- 批准号:
7957700 - 财政年份:2009
- 资助金额:
$ 43.89万 - 项目类别:
RIN1, A NOVEL RAS-INHIBITORY PROTEIN IN YEAST
RIN1,酵母中一种新型 RAS 抑制蛋白
- 批准号:
6890919 - 财政年份:2003
- 资助金额:
$ 43.89万 - 项目类别:
相似国自然基金
硫代砷酸盐在砷污染土壤-水稻体系中形成和富集及影响机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
复杂砷酸盐/亚砷酸盐—硫酸盐矿物的溶解热力学及其对砷在环境中迁移转化的影响
- 批准号:41763012
- 批准年份:2017
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
土壤亚砷酸盐氧化菌与铁氧化物相互作用下砷的氧化与赋存机制研究
- 批准号:41571451
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
淡水浮游生物体内亚砷酸盐富集与效应的营养盐调控及机理研究
- 批准号:21507001
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
砷急性暴露诱导的氧化应激与DNA甲基化异常的关联作用研究
- 批准号:21407036
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 5: Nanotechnology-Based Environmental Sensing
项目5:基于纳米技术的环境传感
- 批准号:
8116787 - 财政年份:
- 资助金额:
$ 43.89万 - 项目类别:
Project 5: Nanotechnology-Based Environmental Sensing
项目5:基于纳米技术的环境传感
- 批准号:
8889477 - 财政年份:
- 资助金额:
$ 43.89万 - 项目类别: