Understanding B-Lactam Resistance in Acinetobacter baumannii
了解鲍曼不动杆菌中的 B-内酰胺耐药性
基本信息
- 批准号:10005100
- 负责人:
- 金额:$ 38.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcinetobacterAcinetobacter baumanniiActive SitesAddressAffectAmidesAntibiotic ResistanceAntibioticsBacteriaBinding SitesBiochemicalBloodBoronic AcidsCarbapenemsCatalysisCefepimeCephalosporinaseChemistryClinicalCollectionCommon CoreDevelopmentEnzymesFrightGenesGeneticGenetic ScreeningGoalsHot SpotKineticsLeadMicrobiologyModern MedicineMulti-Drug ResistanceMultidrug-resistant AcinetobacterMutationPatientsPharmacologic SubstancePhenotypePrevalencePublishingResistanceRespiratory Tract InfectionsScourgeSeriesSiderophoresStreamStructureStructure-Activity RelationshipSulbactamTherapeuticTherapeutic AgentsTriazolesVariantVertebral columnWorld Health Organizationbacterial fitnessbasebeta-Lactam Resistancebeta-Lactamasebeta-Lactamscarbapenem resistancecarbapenemaseclinically relevantcombatdesignefflux pumpfallsgenetic approachgenome sequencinghigh throughput screeningin vitro activityinhibitor/antagonistinnovationinsightnewsnovelnovel strategiesnovel therapeuticsoverexpressionpathogenpriority pathogenresistant strainscaffoldtherapeutic targettransposon sequencingwhole genome
项目摘要
The WHO lists Acinetobacter baumannii (Ab) as the most problematic pathogen infecting patients. In this
renewal, we will build upon our successful accomplishments in our first two R01s in which we developed an
entirely new class of boronic acid transition state inhibitors (BATSIs), explored the structure activity relationships
(SAR) of the chromosomal cephalosporinase of Ab, ADC-7, as well as the class D carbapenemases OXA-23, -
24/40 and -66/51, and defined the efflux pumps governing antibiotic resistance. Herein, we will embark upon
innovative ways to overcome β-lactam resistance by proposing two novel approaches. Firstly, we propose that
structural and mechanistic similarities exist between class C and D β-lactamases present in Acinetobacter spp.
that reveal a common intermediate. This notion will drive efforts to synthesize carbapenem and cephem based
BATSIs that will inactivate both β-lactamase classes. Secondly, we advance that chromosomal blaADC and blaOXA
overexpression in resistant isolates creates new cellular vulnerabilities that can be identified by genetic
approaches such as Tn-Seq. These unique vulnerabilities will be exploited in high-throughput screens (HTS) to
identify novel compounds that specifically target highly β-lactam resistant isolates. The novel targets and new
inhibitors identified could lead to the “next generation” of therapeutics that overcome high-level β-lactam resistant
Ab and avoid the indiscriminate killing of all bacteria. To meet these goals, we will build upon our insights into
the structures of ADC and OXA β-lactamases and the chemistry of α-triazoles and amide bioisostere BATSIs to
explore the SAR of these two series of compounds that will identify inhibitory activity toward both class C and D
β-lactamases. As carbapenems are known to be both substrate (class D) and inhibitors (class C) of these β-
lactamases, we will first synthesize novel BATSI compounds based upon a carbapenem backbone, as this
scaffold provides a common core from which to build a broad-spectrum inhibitor of both C and D β-lactamases.
These new inhibitors will be evaluated microbiologically, biochemically, and structurally against emerging clinical
variants of ADC and OXA β-lactamases. We will then validate the selected inhibitors against a panel of clinical
strains. Simultaneously, we will also use Tn-Seq to identify mutations that confer a synthetic lethal phenotype in
an Ab strain overexpressing the chromosomal blaADC or blaOXA β-lactamase. A genetic screen will be performed
to confirm that the genes identified confer a synthetic lethal phenotype. Lastly, we will utilize high throughput
screening (HTS) to identify new therapeutic agents that impact the interplay of chromosomal blaADC or blaOXA
expression and bacterial viability. The current prevalence of MDR and pan-resistant strains of Ab, combined with
the lack of new antibiotics, underscores the critical need for the development of novel therapeutics to combat
this bacterium. Our goal is to design novel cross-class inhibitors that exploit the commonality of catalysis as well
as agents that affect bacterial fitness and viability. We anticipate the novel BATSIs discovered and agents found
in the HTS will lead to entirely innovative approaches to treating MDR Ab.
世卫组织将鲍曼尼(AB)列为最有问题的病原体感染患者。在这个
更新,我们将在我们开发的前两个R01中取得成功的基础
全新的硼酸过渡状态抑制剂(BATSIS)探索了结构活动关系
AB,ADC-7的染色体头孢菌素酶的(SAR)以及D类碳青霉酶OXA-23, -
24/40和-66/51,并定义了控制抗生素耐药性的外排泵。在这里,我们将开始
通过提出两种新颖的方法来克服β-内酰胺抗性的创新方法。首先,我们建议
C杆菌属中存在的C类和Dβ-内酰胺酶之间存在结构和机械相似性。
这揭示了一个常见的中间体。这个概念将推动综合碳青霉烯和头孢菌素的努力
蝙蝠会使两个β-内酰胺酶类别失活。其次,我们推进了染色体Blaadc和Blaoxa
抗性分离株中的过表达会产生新的细胞漏洞,可以通过遗传来识别
诸如tn-seq之类的方法。这些独特的漏洞将在高通量屏幕(HTS)中探讨
鉴定新的化合物,这些化合物专门针对高度β-内酰胺抗性分离株。新颖的目标和新目标
确定的抑制剂可能导致克服高级β-内酰胺抗性的“下一代”治疗剂
AB并避免滥用所有细菌。为了实现这些目标,我们将基于我们的见解
ADC和OXAβ-内酰胺酶的结构以及α-三唑和酰胺生物酶壳蝙蝠的化学
探索这两个系列化合物的SAR,这些化合物将鉴定对C类抑制活性
β-内酰胺酶。由于碳青霉烯既是这些β-的底物(D类)和抑制剂(C类)(C)
乳糖酶,我们将首先根据碳碳纤维链链合成新型的蝙蝠质化合物,因此
脚手架提供了一个共同的核心,可以从中构建C和Dβ-内酰胺酶的广谱抑制剂。
这些新的抑制剂将在微生物学,生化和结构上对出现的临床进行评估
ADC和OXAβ-内酰胺酶的变体。然后,我们将针对临床面板验证选定的抑制剂
菌株。同时,我们还将使用tn-seq识别会导致合成致命表型的突变
过表达过度表达染色体BlaADC或Blaoxaβ-内酰胺酶的AB菌株。将进行遗传屏幕
为了确认基因确定了会议的合成致命表型。最后,我们将利用高吞吐量
筛选(HTS)以识别影响染色体Blaadc或Blaoxa相互作用的新治疗剂
表达和细菌生存能力。 AB的MDR和泛抗菌菌株的当前患病率与
缺乏新的抗生素,强调了开发新疗法以对抗的关键需求
这个细菌。我们的目标是设计新颖的跨层抑制剂,以利用催化的共同点
作为影响细菌适应性和生存能力的药物。我们预料到发现的新颖的袭击者,并且发现了特工
在HTS中,将导致完全创新的方法来治疗MDR AB。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT A. BONOMO其他文献
ROBERT A. BONOMO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT A. BONOMO', 18)}}的其他基金
Oral Metallo-Beta-Lactamase Inhibitors: Exploiting Reaction Mechanisms
口服金属-β-内酰胺酶抑制剂:利用反应机制
- 批准号:
10618795 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
- 批准号:
10553091 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
- 批准号:
10231804 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
- 批准号:
10341217 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Oral Metallo-Beta-Lactamase Inhibitors: Exploiting Reaction Mechanisms
口服金属-β-内酰胺酶抑制剂:利用反应机制
- 批准号:
10383142 - 财政年份:2021
- 资助金额:
$ 38.63万 - 项目类别:
Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae
耐碳青霉烯类肺炎克雷伯菌的分子流行病学
- 批准号:
8975488 - 财政年份:2015
- 资助金额:
$ 38.63万 - 项目类别:
Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae
耐碳青霉烯类肺炎克雷伯菌的分子流行病学
- 批准号:
9098583 - 财政年份:2015
- 资助金额:
$ 38.63万 - 项目类别:
The Continuing Challenge of Carbapenemases in K. pneumoniae: KPC-2 & NDM-1
肺炎克雷伯菌中碳青霉烯酶的持续挑战:KPC-2
- 批准号:
8441988 - 财政年份:2013
- 资助金额:
$ 38.63万 - 项目类别:
相似海外基金
Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
- 批准号:
10667862 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Development of LspA Inhibitors to Treat Gram-negative Bacterial Infections
开发治疗革兰氏阴性细菌感染的 LspA 抑制剂
- 批准号:
10508185 - 财政年份:2022
- 资助金额:
$ 38.63万 - 项目类别:
Development of LspA Inhibitors to Treat Gram-negative Bacterial Infections
开发治疗革兰氏阴性细菌感染的 LspA 抑制剂
- 批准号:
10654841 - 财政年份:2022
- 资助金额:
$ 38.63万 - 项目类别:
Small molecule inhibitors of lytic transglycosylase to potentiate beta-lactam antibiotics
裂解性转糖基酶小分子抑制剂可增强 β-内酰胺抗生素的作用
- 批准号:
10078254 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别: