Achieving Direct Functional Imaging of Brain Electrophysiology: Nanofabricated Cell-sized Electronic Sensors for Magnetic Resonance Imaging
实现脑电生理学的直接功能成像:用于磁共振成像的纳米制造细胞大小的电子传感器
基本信息
- 批准号:10001896
- 负责人:
- 金额:$ 227.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAwardBlood flowBrainBrain DiseasesBrain imagingBrain regionCell SizeCognitionCommunicationDetectionDevelopmentDevicesElectrodesElectromagneticsElectrophysiology (science)EngineeringEpilepsyEventFunctional ImagingFunctional Magnetic Resonance ImagingFunctional disorderGoalsHumanImageImplantIn SituMagnetic Resonance ImagingMeasuresMethodsMicroelectrodesMonitorNeuronsNoiseOpticsPatientsPhysiologyPrincipal InvestigatorQuadriplegiaQuality of lifeResolutionRodentSignal TransductionTechnologyTissuesValidationWireless Technologybrain volumeimaging probeimprovedinnovationmagnetic fieldminimally invasivenanofabricationnanoscaleneurophysiologyneurotransmissionnovelrelating to nervous systemresponsesensortechnology validation
项目摘要
Project Summary
There is currently a surging effort to develop the necessary technologies for recording neural activity
from the entire volume of the brain in parallel. A whole-brain direct readout of neural signals will be critical to
understanding the elusive cross-regional communication grid underlying brain function and dysfunction. The
overall goal of this new innovator award is the development and application of a new form of brain imaging us-
ing electromagnetic circuits that can be deployed throughout the brain and provide parallel volumetric electro-
physiological readouts of neural activity. The project relies on recent advances made by the principal investiga-
tor, demonstrating the use of tetherless microelectronic neural interfaces that transduce neurophysiological
events wirelessly to detectable magnetic field perturbations, and are monitored by functional magnetic reson-
ance imaging (fMRI). By combining the unique three-dimensional capabilities of fMRI to obtain functional rea-
douts from the entire volume of the brain, with electromagnetic probes—that are able to directly record electro-
physiological neural activity in-situ and transmit its response to the MRI hardware—this project is aiming to
transform the way we acquire brain signals. We will use novel nanofabrication methods to pioneer cell-sized
wireless probes, while employing existing state-of-the-art MRI-compatible microelectrode arrays in rodents for
rigorous validation of the technology and to decouple the electrophysiogical readouts from intrinsic fMRI blood
flow signals. The engineering advances that occurred in recent years have propelled the capabilities of both
electrical and optical implantable probes for brain recording, achieving nanometer scale spatial resolution, high
signal-to-noise ratio and temporal response, and increasingly favorable tissue-device interactions. Implantable
electrode array devices provide us with multiplexed recordings of electrical signals from tens or hundreds of
neurons with high spatial precision at the cellular level. These devices have been successfully implanted in
human patients for the treatment and monitoring of epilepsy and to improve quality of life for tetraplegic pa-
tients. The neuroelectronic fMRI probes that will be developed under the umbrella of this award will greatly
augment these capabilities. Firstly, by presenting a different approach whereby minimally invasive devices are
powered by the MRI scanner itself and do not require bulky on-board power, and secondly, by interacting with
the imaging scanner to transmit electrical neural activity to the detection hardware outside of the brain with no
requirement for a tethered connection. The sensors will be used to directly detect electrical neural activity in
three dimensions, and will help pave the way towards tracing the cross-regional origins of both normal and ab-
normal brain physiology.
项目概要
目前正在大力开发记录神经活动的必要技术
并行地从整个大脑体积直接读出神经信号将是至关重要的。
了解大脑功能和功能障碍背后难以捉摸的跨区域通信网格。
这个新创新者奖的总体目标是开发和应用一种新形式的脑成像技术——
荷兰国际集团的电磁电路可以部署在整个大脑中并提供并行体积电
该项目依赖于主要研究的最新进展。
tor,演示了使用无绳微电子神经接口来转换神经生理学
事件无线地检测到磁场扰动,并通过功能磁共振进行监测
通过结合功能磁共振成像(fMRI)独特的三维功能来获得功能性磁共振成像(fMRI)。
使用电磁探针从大脑的整个体积中提取信号,这些探针能够直接记录电信号
原位生理神经活动并将其响应传输到 MRI 硬件——该项目的目的是
我们将使用新颖的纳米制造方法来改变我们获取大脑信号的方式。
无线探头,同时在啮齿类动物中采用现有最先进的 MRI 兼容微电极阵列
严格验证该技术并将电生理读数与内在 fMRI 血液分离
近年来发生的工程进步推动了两者的功能。
用于大脑记录的电学和光学植入式探针,实现纳米级空间分辨率,高
信噪比和时间响应,以及日益有利的组织-设备相互作用。
电极阵列设备为我们提供了来自数十或数百个电信号的多重记录
这些装置已成功植入细胞水平上具有高空间精度的神经元。
人类患者用于治疗和监测癫痫并提高四肢瘫痪患者的生活质量
在该奖项的保护下开发的神经电子功能磁共振成像探针将极大地发挥作用。
首先,通过提出一种不同的方法来增强这些功能。
由 MRI 扫描仪本身供电,不需要庞大的板载电源,其次,通过与
成像扫描仪将电神经活动传输到大脑外部的检测硬件,无需
传感器将用于直接检测神经电活动。
三个维度,并将有助于为追踪正常和异常的跨区域起源铺平道路
正常的大脑生理机能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aviad Hai其他文献
Aviad Hai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aviad Hai', 18)}}的其他基金
Wireless Sensors for Functional MRI of Brain Seizures
用于大脑癫痫发作功能 MRI 的无线传感器
- 批准号:
10002216 - 财政年份:2019
- 资助金额:
$ 227.85万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10606026 - 财政年份:2022
- 资助金额:
$ 227.85万 - 项目类别:
Oxidative stress-induced vascular pathology and dysfunction in Alzheimer’s disease
阿尔茨海默病中氧化应激诱导的血管病理学和功能障碍
- 批准号:
10523897 - 财政年份:2022
- 资助金额:
$ 227.85万 - 项目类别:
Volumetric Echocardiographic Particle Image Velocimetry for Grading the Severity of Mitral Valve Regurgitation
用于对二尖瓣反流严重程度进行分级的体积超声心动图粒子图像测速
- 批准号:
10847737 - 财政年份:2022
- 资助金额:
$ 227.85万 - 项目类别:
Biomechanical mapping of the optic nerve head and peripapillary sclera using high frequency ultrasonic elastography
使用高频超声弹性成像对视神经乳头和视乳头周围巩膜进行生物力学测绘
- 批准号:
10712180 - 财政年份:2021
- 资助金额:
$ 227.85万 - 项目类别:
Noninvasive assessment of coronary endothelial function by multi-slice MRI
多层MRI无创评估冠状动脉内皮功能
- 批准号:
10456016 - 财政年份:2021
- 资助金额:
$ 227.85万 - 项目类别: