Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
基本信息
- 批准号:10021033
- 负责人:
- 金额:$ 62.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesArchitectureAwarenessBig DataChromosome MappingChromosomesClinicalColorectal CancerCommunitiesComplexComputer softwareDNADNA DatabasesDataData AnalysesDetectionDiseaseDistantElectronic Health RecordEnvironmentExhibitsFamilyFrequenciesGene FrequencyGenesGeneticGenetic HeterogeneityGenetic RecombinationGenomic SegmentGenotypeHaplotypesHealthHeritabilityHeterogeneityIndividualLinkLinkage DisequilibriumMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of pancreasMapsMeasuresMethodologyMethodsModernizationMutationOutcomeOutputParticipantPathogenicityPatternPenetrancePhenotypePopulationPrivatizationResearchResource SharingResourcesSample SizeSideSoftware ToolsSusceptibility GeneTechniquesVariantautomated analysisbasebiobankcancer typecausal variantclinically significantdata warehousedisorder riskfallsfollow-upgene discoverygenetic linkage analysisgenetic pedigreegenetic risk factorgenome wide association studygenome-widehuman diseaseidentity by descentimprovedinnovationmelanomanovelnovel strategiesphenomepower analysisrare cancerrare variantrepositoryrisk varianttargeted sequencingtooltrait
项目摘要
ABSTRACT
Despite decades of research, much of the genetic heritability of human disease remains unmapped to
susceptibility loci; and many gene-phenotype effects do not neatly fit the patterns of heterogeneity required for
well-powered analysis by GWAS nor family-based methods. Some genetic factors that contribute to disease
fall on a detectable, shared haplotypic background, yet have an appreciable population frequency due to
modest effects on disease risk. In such cases, analyses that utilize segmental sharing patterns in distant
relatives, such as identity-by-descent (IBD) mapping, are optimal for disease-gene discovery. This approach
has the advantage of allowing for: lower allele frequency of causal factors and higher allelic heterogeneity than
GWAS, and lower penetrance, more modest effect sizes, and higher genetic heterogeneity than linkage.
Additionally, the creation of large shared segment repositories allows for the identification of people who carry
haplotypes known to harbor rare risk variants, enabling efficient uses of targeted sequencing for evaluating the
effects of rare variants. Building on tools that we have developed as well as others', we propose the following
aims to leverage genetic relatedness estimation and shared segments in big data environments: 1) Create a
resource of shared segments in two large DNA biobanks. We will employ efficient and highly scalable
software architecture to automate analyses of relatedness from genetic data, including deep and accurate
relationship estimation and pedigree-aware shared segment detection across heterogeneous genetic data
types. Existing and novel approaches will be employed in BioVU and BioME, two large EHR-linked DNA
databanks to create shared segment repositories for use by the scientific community. Our analytic framework
will improve scalability and support a variety of standard output formats to integrate with downstream analyses.
2) IBD mapping phenome-wide. Shared segments provide an opportunity to recover power to detect a
tranche of disease-causing variants that contribute to the missing heritability of traits. Furthermore, we will
establish the effect of genetic dysregulation of genes in regions significantly enriched with shared segments
phenome-wide. 3) Demonstrate the utility of shared segments for identifying likely carriers of causal
variants in cancer predisposition genes. We will identify individuals in BioVU and BioME likely to harbor
pathogenic variants in known cancer predisposition genes by matching IBD segments shared between
biorepository participants and cancer cases sequenced at MD Anderson (N>10,000) and performing follow-up
genotyping of the loci to directly assess the clinical significance of the variants using the full EHR. Each aim
represents an innovative approach to data utilization in large EHR-linked DNA databanks, and the creation of
shared resources that will fuel future research. Collectively, our aims map a path towards efficient and
affordable novel disease-gene discovery using shared segments.
抽象的
尽管经过数十年的研究,人类疾病的大部分遗传性仍未映射到
易感位点;许多基因表型效应并不完全符合基因组所需的异质性模式
GWAS 或基于家庭的方法的有力分析。一些导致疾病的遗传因素
落在可检测的、共享的单倍型背景上,但由于以下原因而具有可观的群体频率
对疾病风险的影响不大。在这种情况下,利用远程分段共享模式进行分析
亲属关系,例如血统身份(IBD)作图,是疾病基因发现的最佳选择。这种做法
具有以下优点:与相比,致病因素的等位基因频率较低,等位基因异质性较高
GWAS,以及比连锁更低的外显率、更适度的效应大小和更高的遗传异质性。
此外,创建大型共享段存储库可以识别携带者
已知含有罕见风险变异的单倍型,可以有效利用靶向测序来评估
罕见变异的影响。基于我们和其他人开发的工具,我们提出以下建议
旨在利用大数据环境中的遗传相关性估计和共享片段:1)创建
两个大型 DNA 生物库中共享片段的资源。我们将采用高效且高度可扩展的
软件架构可自动分析遗传数据的相关性,包括深入和准确的分析
跨异质遗传数据的关系估计和谱系感知共享片段检测
类型。 BioVU 和 BioME 这两个与 EHR 相关的大型 DNA 将采用现有的和新颖的方法
数据库创建共享片段存储库供科学界使用。我们的分析框架
将提高可扩展性并支持各种标准输出格式以与下游分析集成。
2) IBD 全表型图谱。共享段提供了恢复电源的机会来检测
导致性状遗传性缺失的一系列致病变异。此外,我们将
确定共享片段显着丰富的区域中基因遗传失调的影响
现象组范围内。 3) 展示共享片段在识别可能的因果携带者方面的效用
癌症易感基因的变异。我们将识别 BioVU 和 BioME 中可能藏匿的个体
通过匹配之间共享的 IBD 片段来识别已知癌症易感基因中的致病变异
生物样本库参与者和癌症病例在 MD 安德森 (N>10,000) 进行测序并进行随访
使用完整的 EHR 对基因座进行基因分型,直接评估变异的临床意义。每个目标
代表了大型 EHR 相关 DNA 数据库中数据利用的创新方法,以及创建
共享资源将推动未来的研究。总的来说,我们的目标描绘了一条通往高效和
使用共享片段发现负担得起的新型疾病基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Below其他文献
Jennifer Below的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Below', 18)}}的其他基金
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
Discovery and Characterization of Rare Variant Effects in Dilated Cardiomyopathy via Large-Scale Biobank Analysis
通过大规模生物库分析发现和表征扩张型心肌病的罕见变异效应
- 批准号:
10682290 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
9764749 - 财政年份:2019
- 资助金额:
$ 62.18万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10251076 - 财政年份:2019
- 资助金额:
$ 62.18万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10456944 - 财政年份:2019
- 资助金额:
$ 62.18万 - 项目类别:
Developmental stuttering: Population-based genetic discovery
发育性口吃:基于群体的遗传发现
- 批准号:
9982908 - 财政年份:2018
- 资助金额:
$ 62.18万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
The Interplay of Host Genetic Variation and the Gut Microbiome in Crohn's Disease
克罗恩病宿主遗传变异与肠道微生物组的相互作用
- 批准号:
10751276 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
Integrative and trans-ethnic study to understand psoriasis associated signals
了解银屑病相关信号的综合和跨种族研究
- 批准号:
10657973 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别:
A genomics-based strategy to precision phenotyping and drug repositioning in cardiometabolic diseases
基于基因组学的心脏代谢疾病精准表型分析和药物重新定位策略
- 批准号:
10564666 - 财政年份:2023
- 资助金额:
$ 62.18万 - 项目类别: