Platelet Metabolism in Diabetes Mellitus

糖尿病中的血小板代谢

基本信息

  • 批准号:
    10705023
  • 负责人:
  • 金额:
    $ 53.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-20 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Heart disease and stroke are the No. 1 and 5 causes of deaths in the US. Type 1 diabetes mellitus (T1DM) significantly increases the risk for heart attacks and strokes. Intense glycemic control has been reported to reduce major cardiovascular events by >30%, suggesting that hyperglycemia is one of the major contributors to T1DM-associated heart attack and stroke risk escalation. However, how T1DM and hyperglycemia exacerbate such risk is unclear. Platelets are vascular first-responders that activate for hemostasis upon blood vessel damage; whereas pathogenic platelet activation leads to spurious thrombosis and acute vascular obstruction. T1DM and hyperglycemia lead to platelet hyperactivity and increased propensity to form thrombi. This proposals aims to understand how hyperglycemia causes platelet hyperactivity and thrombosis in T1DM, and to develop new therapeutic strategies to mitigate T1DM-associated heart attacks and strokes. Utilizing an integrated metabolism toolkit including state-of-the-art Stable Isotope Resolved Metabolomics (SIRM), we demonstrated critical role of altered platelet metabolism in thrombin-induced platelet activation. Specifically, thrombin stimulation alters platelet metabolism that is centered on glycogen metabolism, pentose phosphate pathway (PPP), and fructose 1,6-bisphosphate (F1,6BP), namely, “the glycogen-PPP-F1,6BP axis”, modulating energy, redox and calcium homeostasis in platelets and leading to their activation. Literature and our compelling preliminary data further reveal that hyperglycemia increases glycogen storage and its mobilization that generates ATP, PPP inhibition, reactive oxygen species, and intracellular calcium, all of which are in line with increased propensity for platelets to activate. Therefore, our overarching hypothesis is that hyperglycemia changes the glycogen-PPP-F1,6BP axis in platelets to drive platelet hyperactivity and thus thrombotic risk in T1DM. In Aim 1, we will delineate these hyperglycemia-induced changes in the glycogen-PPP-F1,6BP axis in platelets isolated from T1DM patients and normal healthy platelets subject to acute hyperglycemia in vitro. In Aim 2, we will determine how modulation of the glycogen-PPP-F1,6BP axis by pharmacological and genetic means suppresses hyperglycemia-induced platelet hyperactivity in vitro. In Aim 3, we will determine how modulation of the glycogen- PPP-F1,6BP axis by pharmacological and genetic means reduces hyperglycemia-exacerbated thrombosis and stroke in animal models. Our team is in a unique position to address our hypothesis, as we possess recognized expertise in metabolism and metabolomics (Qingjun Wang PhD and Matthew Gentry PhD), platelet biology (Sidney Whiteheart PhD), T1DM (Lisa Tannock MD), and stroke (Justin Fraser MD and Jill Roberts PhD), and we have strong partnership with the University of Kentucky Metabolomics, Redox Metabolism, and Rodent Surgery Cores. Upon completion of the proposed project, we will have presented a novel mechanism for metabolic dysregulation in platelets to mediate hyperglycemia-induced platelet hyperactivity and thrombosis in T1DM, and will have identified new therapeutic targets for mitigating T1DM-associated heart attacks and strokes.
项目概要/摘要 心脏病和中风是美国 1 型糖尿病 (T1DM) 死亡的第一大和第五大原因。 据报道,严格的血糖控制会显着增加心脏病和中风的风险。 减少主要心血管事件超过 30%,表明高血糖是导致心血管事件发生的主要原因之一 然而,T1 型糖尿病相关的心脏病发作和中风风险升级,以及高血糖如何恶化。 这种风险尚不清楚。血小板是血管第一反应者,可在血管上激活止血。 而致病性血小板活化会导致假性血栓形成和急性血管阻塞。 T1DM 和高血糖会导致血小板过度活跃并增加形成血栓的倾向。 旨在了解高血糖如何导致 T1DM 患者血小板过度活跃和血栓形成,并开发 减轻 T1DM 相关心脏病和中风的新治疗策略。 我们展示了代谢工具包,包括最先进的稳定同位素解析代谢组学 (SIRM) 血小板代谢改变在凝血酶诱导的血小板活化中的关键作用。 改变以糖原代谢、磷酸戊糖途径为中心的刺激血小板代谢 (PPP)和果糖1,6-二磷酸(F1,6BP),即“糖原-PPP-F1,6BP轴”,调节能量, 血小板中的氧化还原和钙稳态并导致其激活的文献和我们引人注目的。 初步数据进一步表明,高血糖会增加糖原的储存及其动员,从而产生 ATP、PPP 抑制、活性氧和细胞内钙,所有这些都与增加有关 因此,我们的首要假设是高血糖会改变血小板的激活倾向。 血小板中的糖原-PPP-F1,6BP 轴可驱动血小板过度活跃,从而提高 T1DM 中的血栓形成风险。 我们将描述分离的血小板中糖原-PPP-F1,6BP 轴的这些高血糖引起的变化 在目标 2 中,我们将在体外研究来自 T1DM 患者和正常健康血小板的急性高血糖。 确定如何通过药理学和遗传手段调节糖原-PPP-F1,6BP 轴抑制 在目标 3 中,我们将确定如何调节糖原-体外高血糖诱导的血小板过度活跃。 PPP-F1,6BP轴通过药理学和遗传手段减少高血糖加剧的血栓形成和 正如我们所认识到的那样,我们的团队处于解决我们的假设的独特地位。 代谢和代谢组学方面的专业知识(王庆军博士和马修·金特里博士)、血小板生物学 (Sidney Whiteheart 博士)、T1DM(Lisa Tannock 医学博士)和中风(Justin Fraser 医学博士和 Jill Roberts 博士),以及 我们与肯塔基大学代谢组学、氧化还原代谢和啮齿动物建立了牢固的合作伙伴关系 手术核心。完成拟议的项目后,我们将提出一种新的机制。 血小板代谢失调介导高血糖诱导的血小板过度活跃和血栓形成 T1DM,并将确定减轻 T1DM 相关心脏病和中风的新治疗靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qingjun Wang其他文献

Qingjun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qingjun Wang', 18)}}的其他基金

Platelet Metabolism in Diabetes Mellitus
糖尿病中的血小板代谢
  • 批准号:
    10339720
  • 财政年份:
    2022
  • 资助金额:
    $ 53.15万
  • 项目类别:
Method for Detection and Quantification of CLN3 Protein
CLN3蛋白的检测和定量方法
  • 批准号:
    10303283
  • 财政年份:
    2021
  • 资助金额:
    $ 53.15万
  • 项目类别:
MOLECULAR MECHANISM OF MAMMALIAN AUTOPHAGY
哺乳动物自噬的分子机制
  • 批准号:
    8360577
  • 财政年份:
    2011
  • 资助金额:
    $ 53.15万
  • 项目类别:
MOLECULAR MECHANISM OF MAMMALIAN AUTOPHAGY
哺乳动物自噬的分子机制
  • 批准号:
    8168254
  • 财政年份:
    2010
  • 资助金额:
    $ 53.15万
  • 项目类别:
ESSENTIAL ROLE FOR AUTOPHAGY PROTEIN ATG7 THE PREVENTION OF AXONAL DEGENERATION
自噬蛋白 ATG7 在预防轴突变性中的重要作用
  • 批准号:
    7954117
  • 财政年份:
    2009
  • 资助金额:
    $ 53.15万
  • 项目类别:
ESSENTIAL ROLE FOR AUTOPHAGY PROTEIN ATG7 THE PREVENTION OF AXONAL DEGENERATION
自噬蛋白 ATG7 在预防轴突变性中的重要作用
  • 批准号:
    7722267
  • 财政年份:
    2008
  • 资助金额:
    $ 53.15万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 53.15万
  • 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    $ 53.15万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 53.15万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 53.15万
  • 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
  • 批准号:
    10701309
  • 财政年份:
    2023
  • 资助金额:
    $ 53.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了