Brain Glycogen-Metabolism,Mechanisms, and Therapeutic Potential
脑糖原代谢、机制和治疗潜力
基本信息
- 批准号:10730778
- 负责人:
- 金额:$ 106.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdolescenceAffectAlzheimer&aposs DiseaseAtaxiaBehaviorBiochemicalBiologyBrainCarbohydratesCell physiologyCellular Metabolic ProcessCessation of lifeCognitionComplexComprehensionConsumptionDataDevelopmentDiagnosisDiseaseDisease ProgressionEventExcisionFreedomFundingGlucoseGlycogenGlycogen Storage DiseaseHomeostasisIntractable EpilepsyKnowledgeLafora DiseaseMemoryMetabolicMetabolismModalityModelingMolecularMutationNational Institute of Neurological Disorders and StrokeNerve DegenerationPatientsPlayResearchRoleSeminalSignal TransductionSymptomsTherapeuticTissuesTranslatingVegetative StatesWorkautosomebiomarker developmentbrain metabolismdriving forceflexibilityglucose metabolismglycogen metabolismhuman diseaseinsightmouse modelnervous system disordernovel therapeuticspolyglucosanpre-clinicalsextherapy developmenttool
项目摘要
Brain metabolism is a fundamental aspect of biology and human disease. The brain critically depends on
glucose, consuming large quantities as the biochemical fuel for cognition, memory, and behavior. Fundamental
aspects of brain metabolism have been extensively studied, but recent evidence regarding the key role of
glucose and glycogen metabolism in neurological diseases has recently opened up new avenues of research.
The neurological disease where aberrant glucose metabolism has been investigated in-depth is Lafora disease
(LD). LD is an autosomal recessive, fatal, glycogen storage disease (GSD) that equally affects both sexes.
Symptoms emerge in adolescence with drug-resistant epilepsy, ataxia, neurodegeneration, and a rapid decline
into a vegetative state before death. Results from several labs using multiple models have demonstrated that
aberrant intracellular glycogen-like aggregates, known as polyglucosan bodies (PGBs), are the cause of LD.
Strikingly, we and others have identified PGBs in multiple neurological diseases and we hypothesize that
PGBs are a driving force in disease progression for brain-impacted GSDs, and that PGBs also play a
critical role in Alzheimer’s disease (AD).
We have made foundational discoveries regarding glucose hypometabolism in LD, defined how PGBs
impact cellular processes, developed cutting-edge tools to determine the underlying cellular mechanisms, and
established therapeutic platforms to inhibit and/or eliminate PGBs. Defining the mechanisms of glycogen
metabolism in LD provides insights into how PGBs form and impact brain homeostasis. Thus, LD offers a
unique window into both normal brain glucose metabolism and broader disease implications when this
metabolism is perturbed.
This R35 will combine our NINDS-funded, LD-centric R01 and P01, and extend our expertise to brain-
impacted GSDs and determining the role of PGBs in AD. Moving forward, we will further define LD-driven
perturbations in signaling at the molecular level, elucidate changes in cellular physiology, and establish novel
therapeutic modalities at the organismal level. Excitingly, the work on LD serves as a model for how to
interrogate brain metabolic perturbations in other neurological diseases involving PGBs. We will apply these
powerful LD-developed tools and insights to define how PGBs impact multiple neurological diseases,
determine the glycogen-centric molecular mechanisms impacting disease progression, and define how PGB
removal affects brain metabolism as a pre-clinical therapeutic. Importantly, we have key pieces of preliminary
data for LD, brain-impacted GSDs, and AD from both mouse models and patient tissue. The increased
stability, freedom, and flexibility provided by the R35 would allow us to make seminal discoveries in brain
metabolism and define the role of PGBs in multiple diseases while carrying out key steps in the development of
therapies and biomarker development.
!
脑代谢是生物学和人类疾病的基本方面。大脑关键取决于
葡萄糖,消耗大量的生化燃料,用于认知,记忆和行为。基本的
大脑代谢的各个方面已经广泛研究,但是有关的最新证据
神经系统疾病中的葡萄糖和糖原代谢最近开辟了新的研究途径。
已深入研究了异常葡萄糖代谢的神经系统疾病是拉福拉病
(LD)。 LD是一种常染色体隐性,致命的,糖原储存疾病(GSD),同样影响两性。
耐药性癫痫,共济失调,神经退行性和快速下降的青少年症状出现
死亡前进入营养状态。使用多个模型的多个实验室的结果表明,
异常的细胞内糖原样聚集体,称为聚葡萄糖体(PGB),是LD的原因。
令人惊讶的是,我们和其他人已经确定了多种神经系统疾病中的PGB,我们假设
PGB是脑反影响GSD疾病进展的驱动力,PGB也发挥
在阿尔茨海默氏病(AD)中的关键作用。
我们已经对LD中的葡萄糖低代谢进行了基本发现,该发现定义了PGB
影响细胞过程,开发的尖端工具以确定潜在的细胞机制,并
建立了抑制和/或消除PGB的治疗平台。定义糖原的机制
LD中的代谢提供了有关PGB形成和影响大脑稳态的见解。那是LD提供的
当此时,独特的窗口进入正常的脑葡萄糖代谢和更广泛的疾病意义
代谢受到干扰。
这款R35将结合我们的Ninds资助,以LD为中心的R01和P01,并将我们的专业知识扩展到大脑
受影响的GSD并确定PGB在AD中的作用。向前迈进,我们将进一步定义LD驱动
在分子水平的信号传导中扰动,阐明细胞生理的变化,并建立新颖的
有机水平的治疗方式。令人兴奋的是,LD上的工作是如何的模型
询问其他神经系统疾病中的脑代谢扰动,涉及PGB。我们将应用这些
强大的LD开发工具和见解,以定义PGB如何影响多种神经疾病,
确定影响疾病进展的以糖原为中心的分子机制,并定义PGB
去除会影响脑代谢作为一种临床前疗法。重要的是,我们有关键的初步
LD,脑影响的GSD以及来自小鼠模型和患者组织的AD数据。增加
R35提供的稳定性,自由和灵活性将使我们能够在大脑中进行第二次发现
代谢并定义了PGB在多种疾病中的作用,同时在开发中执行关键步骤
疗法和生物标志物开发。
呢
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew S. Gentry其他文献
Thermophilic Phosphatases and Methods for Processing Starch Using the Same
嗜热磷酸酶和使用其加工淀粉的方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Matthew S. Gentry - 通讯作者:
Matthew S. Gentry
APOE4 Lowers Energy Expenditure and Impairs Glucose Oxidation by Increasing Flux through Aerobic Glycolysis
APOE4 通过有氧糖酵解增加通量来降低能量消耗并损害葡萄糖氧化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Brandon C Farmer;Holden C. Williams;Nicholas A. Devanney;Margaret A. Piron;Grant K. Nation;D. J. Carter;Adeline E. Walsh;R. Khanal;L. Young;J. Kluemper;Gabriela Hernandez;Elizabeth J. Allenger;R. Mooney;J. Anthony Brandon;Vedant A. Gupta;Philip A. Kern;Matthew S. Gentry;Josh M. Morganti;Ramon C. Sun;Lance A. Johnson - 通讯作者:
Lance A. Johnson
Spatial Metabolome Lipidome and Glycome from a Single brain Section
来自单个脑切片的空间代谢组脂质组和糖组
- DOI:
10.1101/2023.07.22.550155 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Harrison A. Clarke;Xin Ma;Cameron J. Shedlock;Terrymar Medina;Tara R Hawkinson;L. Wu;Roberto A. Ribas;Shannon B Keohane;Sakthivel Ravi;Jennifer L. Bizon;Sara N. Burke;J. Abisambra;Matthew E. Merritt;B. Prentice;C. V. Vander Kooi;Matthew S. Gentry;Li Chen;Ramon C. Sun - 通讯作者:
Ramon C. Sun
Erratum to: Unique carbohydrate binding platforms employed by the glucan phosphatases
勘误:葡聚糖磷酸酶采用的独特碳水化合物结合平台
- DOI:
10.1007/s00018-016-2287-x - 发表时间:
2016 - 期刊:
- 影响因子:8
- 作者:
Shane Emanuelle;bullet M Kathryn Brewer;D. Meekins;Matthew S bullet;Gentry;Matthew S. Gentry - 通讯作者:
Matthew S. Gentry
Effect of intracerebroventricular administration of alglucosidase alfa in two mouse models of Lafora disease: Relevance for clinical practice
- DOI:
10.1016/j.eplepsyres.2024.107317 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Luis Zafra-Puerta;Matthieu Colpaert;Nerea Iglesias-Cabeza;Daniel F. Burgos;Gema Sánchez-Martín;Matthew S. Gentry;Marina P. Sánchez;Jose M. Serratosa - 通讯作者:
Jose M. Serratosa
Matthew S. Gentry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew S. Gentry', 18)}}的其他基金
Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
- 批准号:
10644000 - 财政年份:2022
- 资助金额:
$ 106.3万 - 项目类别:
Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
- 批准号:
10748000 - 财政年份:2022
- 资助金额:
$ 106.3万 - 项目类别:
Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
- 批准号:
10518440 - 财政年份:2022
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10285469 - 财政年份:2021
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10610572 - 财政年份:2020
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10786602 - 财政年份:2020
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10401225 - 财政年份:2020
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10405662 - 财政年份:2020
- 资助金额:
$ 106.3万 - 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
- 批准号:
10159325 - 财政年份:2020
- 资助金额:
$ 106.3万 - 项目类别:
Treatment of Lafora disease with an antibody-enzyme fusion
用抗体-酶融合物治疗拉福拉病
- 批准号:
10704334 - 财政年份:2019
- 资助金额:
$ 106.3万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of sleep in brain resilience during aging using a scalable and short-lived vertebrate model
使用可扩展且寿命较短的脊椎动物模型研究睡眠在衰老过程中大脑恢复能力中的作用
- 批准号:
10740068 - 财政年份:2023
- 资助金额:
$ 106.3万 - 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
- 批准号:
10578466 - 财政年份:2023
- 资助金额:
$ 106.3万 - 项目类别:
Effects of mild traumatic brain injury in a mouse model of cerebral amyloid angiopathy
轻度创伤性脑损伤对脑淀粉样血管病小鼠模型的影响
- 批准号:
10648555 - 财政年份:2023
- 资助金额:
$ 106.3万 - 项目类别:
Mechanisms of Circadian and Synaptic Dysfunction After Repetitive Mild TBI
重复性轻度 TBI 后昼夜节律和突触功能障碍的机制
- 批准号:
10418007 - 财政年份:2022
- 资助金额:
$ 106.3万 - 项目类别: