Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential

脑糖原 - 代谢、机制和治疗潜力

基本信息

  • 批准号:
    10159325
  • 负责人:
  • 金额:
    $ 114.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Brain metabolism is a fundamental aspect of biology and human disease. The brain critically depends on glucose, consuming large quantities as the biochemical fuel for cognition, memory, and behavior. Fundamental aspects of brain metabolism have been extensively studied, but recent evidence regarding the key role of glucose and glycogen metabolism in neurological diseases has recently opened up new avenues of research. The neurological disease where aberrant glucose metabolism has been investigated in-depth is Lafora disease (LD). LD is an autosomal recessive, fatal, glycogen storage disease (GSD) that equally affects both sexes. Symptoms emerge in adolescence with drug-resistant epilepsy, ataxia, neurodegeneration, and a rapid decline into a vegetative state before death. Results from several labs using multiple models have demonstrated that aberrant intracellular glycogen-like aggregates, known as polyglucosan bodies (PGBs), are the cause of LD. Strikingly, we and others have identified PGBs in multiple neurological diseases and we hypothesize that PGBs are a driving force in disease progression for brain-impacted GSDs, and that PGBs also play a critical role in Alzheimer’s disease (AD). We have made foundational discoveries regarding glucose hypometabolism in LD, defined how PGBs impact cellular processes, developed cutting-edge tools to determine the underlying cellular mechanisms, and established therapeutic platforms to inhibit and/or eliminate PGBs. Defining the mechanisms of glycogen metabolism in LD provides insights into how PGBs form and impact brain homeostasis. Thus, LD offers a unique window into both normal brain glucose metabolism and broader disease implications when this metabolism is perturbed. This R35 will combine our NINDS-funded, LD-centric R01 and P01, and extend our expertise to brain- impacted GSDs and determining the role of PGBs in AD. Moving forward, we will further define LD-driven perturbations in signaling at the molecular level, elucidate changes in cellular physiology, and establish novel therapeutic modalities at the organismal level. Excitingly, the work on LD serves as a model for how to interrogate brain metabolic perturbations in other neurological diseases involving PGBs. We will apply these powerful LD-developed tools and insights to define how PGBs impact multiple neurological diseases, determine the glycogen-centric molecular mechanisms impacting disease progression, and define how PGB removal affects brain metabolism as a pre-clinical therapeutic. Importantly, we have key pieces of preliminary data for LD, brain-impacted GSDs, and AD from both mouse models and patient tissue. The increased stability, freedom, and flexibility provided by the R35 would allow us to make seminal discoveries in brain metabolism and define the role of PGBs in multiple diseases while carrying out key steps in the development of therapies and biomarker development. !
大脑代谢是生物学和人类疾病的基本方面。 葡萄糖,消耗大量的生化燃料,用于认知,记忆和行为。 大脑代谢方面已经进行了广泛的研究,但有关的最新证据 神经系统疾病中的葡萄糖和糖原代谢最近开发了新的研究途径。 已深入研究了异常葡萄糖代谢的神经系统疾病是Lafora病 (LD)。 抗药性癫痫,共济失调,神经退行性和快速下降的症状在青春期出现 死亡前的植物状态。 异常的细胞内糖原样聚集(称为聚葡萄糖体(PGB))是LD的停止。 令人惊讶的是,我们和其他人已经确定了多种神经系统疾病中的PGB,我们假设 PGB是脑反影响GSD的疾病进展的推动力,PGB也发挥 在阿尔茨海默氏病(AD)中的关键作用。 我们已经对LD中的葡萄糖低代谢进行了基本发现,该发现定义了PGB 影响细胞过程,开发的最先进的工具设置的基础细胞机制,以及 建立的治疗平台以吸入/或消除PGB。 LD中的代谢提供了有关PGB的形成和影响大脑稳态的见解。 正常的脑葡萄糖代谢和更广泛的疾病含义的独特窗口,而 代谢受到干扰。 这款R35将结合我们的Ninds资助,以LD为中心的R01和P01,并将我们的专业知识扩展到大脑 受影响的GSD并确定PGB在AD中的作用,我们将进一步定义LD驱动 在分子水平的信号传导中扰动,阐明细胞生理的变化,并建立新颖的 令人兴奋的是,LD上的工作是如何进行的。 询问其他涉及PGB的神经系统疾病中的大脑代谢扰动。 强大的LD开发工具和见解,以定义PGB如何影响多种神经疾病, 确定影响疾病进展的以糖原为中心的分子机制,并定义PGB 去除会影响大脑代谢作为一种临床前治疗。 LD,脑影响的GSD和AD的数据来自小鼠模型和患者组织 R35提供的稳定性,自由和灵活性将使我们能够在Brain中进行开创性发现 代谢并定义了PGB在多种疾病中的作用,同时在开发中执行关键步骤 疗法和生物标志物开发。 呢

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew S. Gentry其他文献

Thermophilic Phosphatases and Methods for Processing Starch Using the Same
嗜热磷酸酶和使用其加工淀粉的方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew S. Gentry
  • 通讯作者:
    Matthew S. Gentry
Erratum to: Unique carbohydrate binding platforms employed by the glucan phosphatases
勘误:葡聚糖磷酸酶采用的独特碳水化合物结合平台
  • DOI:
    10.1007/s00018-016-2287-x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Shane Emanuelle;bullet M Kathryn Brewer;D. Meekins;Matthew S bullet;Gentry;Matthew S. Gentry
  • 通讯作者:
    Matthew S. Gentry
APOE4 Lowers Energy Expenditure and Impairs Glucose Oxidation by Increasing Flux through Aerobic Glycolysis
APOE4 通过有氧糖酵解增加通量来降低能量消耗并损害葡萄糖氧化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brandon C Farmer;Holden C. Williams;Nicholas A. Devanney;Margaret A. Piron;Grant K. Nation;D. J. Carter;Adeline E. Walsh;R. Khanal;L. Young;J. Kluemper;Gabriela Hernandez;Elizabeth J. Allenger;R. Mooney;J. Anthony Brandon;Vedant A. Gupta;Philip A. Kern;Matthew S. Gentry;Josh M. Morganti;Ramon C. Sun;Lance A. Johnson
  • 通讯作者:
    Lance A. Johnson
Spatial Metabolome Lipidome and Glycome from a Single brain Section
来自单个脑切片的空间代谢组脂质组和糖组
  • DOI:
    10.1101/2023.07.22.550155
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harrison A. Clarke;Xin Ma;Cameron J. Shedlock;Terrymar Medina;Tara R Hawkinson;L. Wu;Roberto A. Ribas;Shannon B Keohane;Sakthivel Ravi;Jennifer L. Bizon;Sara N. Burke;J. Abisambra;Matthew E. Merritt;B. Prentice;C. V. Vander Kooi;Matthew S. Gentry;Li Chen;Ramon C. Sun
  • 通讯作者:
    Ramon C. Sun
Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation[W]
拟南芥葡聚糖磷酸酶 LIKE SEX FOUR2 的结构揭示了淀粉去磷酸化的独特机制[W]
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Meekins;Hou;Satrio Husodo;Bradley C. Paasch;Travis M. Bridges;Diana Santelia;O. Kötting;C. V. Vander Kooi;Matthew S. Gentry
  • 通讯作者:
    Matthew S. Gentry

Matthew S. Gentry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew S. Gentry', 18)}}的其他基金

Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
  • 批准号:
    10644000
  • 财政年份:
    2022
  • 资助金额:
    $ 114.75万
  • 项目类别:
Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
  • 批准号:
    10748000
  • 财政年份:
    2022
  • 资助金额:
    $ 114.75万
  • 项目类别:
Aberrant Glycogen in Lung Adenocarcinoma Tumorigenesis
肺腺癌肿瘤发生中的异常糖原
  • 批准号:
    10518440
  • 财政年份:
    2022
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
  • 批准号:
    10285469
  • 财政年份:
    2021
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
  • 批准号:
    10610572
  • 财政年份:
    2020
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
  • 批准号:
    10786602
  • 财政年份:
    2020
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
  • 批准号:
    10401225
  • 财政年份:
    2020
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen - Metabolism, Mechanisms, and Therapeutic Potential
脑糖原 - 代谢、机制和治疗潜力
  • 批准号:
    10405662
  • 财政年份:
    2020
  • 资助金额:
    $ 114.75万
  • 项目类别:
Brain Glycogen-Metabolism,Mechanisms, and Therapeutic Potential
脑糖原代谢、机制和治疗潜力
  • 批准号:
    10730778
  • 财政年份:
    2020
  • 资助金额:
    $ 114.75万
  • 项目类别:
Treatment of Lafora disease with an antibody-enzyme fusion
用抗体-酶融合物治疗拉福拉病
  • 批准号:
    10704334
  • 财政年份:
    2019
  • 资助金额:
    $ 114.75万
  • 项目类别:

相似国自然基金

干旱内陆河高含沙河床对季节性河流入渗的影响机制
  • 批准号:
    52379031
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
  • 批准号:
    32371610
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
  • 批准号:
    72373005
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
  • 批准号:
    82360655
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
  • 批准号:
    42301019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Perceptual decision making over the lifespan
一生中的感性决策
  • 批准号:
    10605083
  • 财政年份:
    2023
  • 资助金额:
    $ 114.75万
  • 项目类别:
Investigating the role of sleep in brain resilience during aging using a scalable and short-lived vertebrate model
使用可扩展且寿命较短的脊椎动物模型研究睡眠在衰老过程中大脑恢复能力中的作用
  • 批准号:
    10740068
  • 财政年份:
    2023
  • 资助金额:
    $ 114.75万
  • 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
  • 批准号:
    10578466
  • 财政年份:
    2023
  • 资助金额:
    $ 114.75万
  • 项目类别:
Effects of mild traumatic brain injury in a mouse model of cerebral amyloid angiopathy
轻度创伤性脑损伤对脑淀粉样血管病小鼠模型的影响
  • 批准号:
    10648555
  • 财政年份:
    2023
  • 资助金额:
    $ 114.75万
  • 项目类别:
Mechanisms of Circadian and Synaptic Dysfunction After Repetitive Mild TBI
重复性轻度 TBI 后昼夜节律和突触功能障碍的机制
  • 批准号:
    10418007
  • 财政年份:
    2022
  • 资助金额:
    $ 114.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了