Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
基本信息
- 批准号:9788446
- 负责人:
- 金额:$ 21.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAmericanArchitectureAreaAutomobile DrivingBiocompatible MaterialsBiologicalBlood VesselsCell Differentiation processCell MaturationCell SurvivalCellsCharacteristicsChemicalsComplexCuesDependenceDepositionDevelopmentDiffusionDimensionsDiseaseElasticityEndothelial CellsEngineeringEnvironmentExhibitsExtracellular MatrixGelatinHumanHydrogelsIn VitroMechanicsMicrofabricationMicrofluidic MicrochipsMicrofluidicsModelingMuscleMuscle FibersMyoblastsNatural regenerationNutrientOperative Surgical ProceduresOrganOrgan failureOxygenPatientsPatternPolymersPositioning AttributePrintingProblem SolvingProcessPropertyPrunella vulgarisReagentRecombinantsRegenerative MedicineRiskSignal TransductionSkeletal MuscleStructureSystemTechnologyTimeTissue EngineeringTissue TransplantationTissuesTransplanted tissueTraumaTraumatic injuryTropoelastinUrsidae FamilyWritingangiogenesisbasebioprintingblood perfusioncell typeclinically relevantcosthealingimprovedin vivoinjuredmechanical propertiesnew technologynovelphysical propertyprogramstechnology developmentthree dimensional structuretumor ablation
项目摘要
Project Summary
In vitro development of highly organized and vascularized three-dimensional (3D) tissue constructs is of great
importance in tissue engineering, since native muscle tissues exhibit highly organized 3D complex
architectures composed of an extracellular matrix (ECM), different cell types, and chemical and physical
signaling cues. Bioprinting has emerged as a new technology to develop highly complex, 3D structures;
however, there are many remaining challenges, such as the necessity for precise positioning/switching of
different cell-types and materials to create multi-cellular 3D structures with various sizes, and creating patterns
that resemble the physical properties of in vivo environments. To address these challenges, we plan to develop
an embedded multi-material bioprinting (EMB) technology that employs a self-healing supporting hydrogel and
a programmable microfluidic device. The multi-material bioprinting (MB) system can be developed by
integration of a direct-write 3D bioprinting system with a high precision, programmable microfluidic printhead,
which can easily and quickly switch between different materials, reagents and cells. The multi-axial extrusion
systems are able to create multi-scale microfibers for muscle bundles and perfusable blood vessel networks to
mimic the mechanical properties and architecture of their spatially organized natural counterparts. While it is
difficult to precisely control the materials’ position in Z directions to create freestanding hydrogel architectures,
we will improve the high print fidelity of the MB system by combining an embedded 3D bioprinting technology
by using a self-healing supporting hydrogel. In addition, the supporting hydrogel will be able to achieve fast
deposition of the desired pre-polymer solution in X-Y-Z directions without additional gelation processing. By
combining this embedded printing strategy with the microfluidic device incorporated MB technology, it will allow
us to print multi-component/multi-cellular tissue constructs with biologically relevant architectures and
characteristics that are difficult or impossible to bioprint at present. Furthermore, the use of a cell-laden bioink,
which mimics the mechanical and biological properties of muscle tissue, can act as a platform to promote
differentiation and maturation of muscle precursors, as well as improved contractile activity. It is envisioned
that the successful development of this project will have a significant impact on the ability to heal muscle
trauma as well as to advance the field of muscle tissue engineering. Furthermore, this process can be readily
applied to other areas of regenerative medicine to generate new organs.
项目摘要
高度组织和血管化的三维(3D)组织构建体的体外发展非常好
在组织工程中的重要性,因为天然肌肉时间暴露了高度有条理的3D复合物
由细胞外基质(ECM),不同的细胞类型以及化学和物理的体系结构
信号提示。生物印刷已成为一种开发高度复杂的3D结构的新技术。
但是,还有许多剩余的挑战,例如精确定位/切换的必要挑战
不同的细胞类型和材料,以创建具有各种尺寸的多细胞3D结构,并创建模式
这类似于体内环境的物理特性。为了应对这些挑战,我们计划发展
一种嵌入的多物质生物打印(EMB)技术,该技术采用了支持水凝胶的自我修复和
可编程的微流体设备。多物质生物打印(MB)系统可以由
集成具有高精度,可编程的微流体Printhead的直接3D生物打印系统
可以轻松,快速地在不同的材料,试剂和细胞之间切换。多轴扩展
系统能够为肌肉束和灌注血管网络创建多尺度的超纤维
模仿其空间组织的自然对应物的机械性能和结构。虽然是
难以精确控制材料在z方向上的位置,以创建独立的水凝胶体系结构,
我们将通过组合嵌入式3D生物打印技术来提高MB系统的高印刷保真度
通过使用支撑水凝胶的自我修复。此外,支撑水凝胶将能够快速实现
所需的预聚合物溶液在X-Y-Z方向上的沉积,而无需额外的凝胶化处理。经过
将这种嵌入式打印策略与微流体设备合并的MB技术相结合,它将允许
我们要使用具有生物学相关架构的多组分/多细胞组织结构
目前难以或不可能生物的特征。此外,使用含有细胞的生物学
模仿肌肉组织的机械和生物学特性,可以作为促进的平台
肌肉前体的分化和成熟,以及改善的收缩活性。它是设想的
该项目的成功发展将对治愈肌肉的能力产生重大影响
创伤以及促进肌肉组织工程领域。此外,这个过程很容易
应用于再生医学的其他领域来产生新的器官。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Ryon Shin其他文献
Su Ryon Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Ryon Shin', 18)}}的其他基金
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 21.98万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10353393 - 财政年份:2021
- 资助金额:
$ 21.98万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10425405 - 财政年份:2018
- 资助金额:
$ 21.98万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10212963 - 财政年份:2018
- 资助金额:
$ 21.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 21.98万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 21.98万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 21.98万 - 项目类别: