Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
基本信息
- 批准号:10353393
- 负责人:
- 金额:$ 53.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlginatesAllograftingArchitectureAreaAutologous TransplantationBiocompatible MaterialsBiomimeticsBlood VesselsCell SurvivalCellsCharacteristicsCicatrixClinicalCollagenComplexElderlyElectrophysiology (science)ElectrospinningEndothelial CellsEndotheliumEngineeringExtracellular MatrixFibrosisFunctional RegenerationGelatinGrowthGrowth FactorHematopoieticHydrogelsImageImmune responseImpairmentImplantInfectionInjuryInsulin-Like Growth Factor IKineticsLasersMethodsModelingMorbidity - disease rateMuscleMuscle FibersMuscle functionMuscular AtrophyMusculoskeletal DiseasesMyoblastsNerve RegenerationNeuromuscular JunctionNude MiceOperative Surgical ProceduresPainPatientsPersonsPhysiologicalPopulationPositioning AttributePrintingProductionProtocols documentationQuality of lifeRecoveryRegenerative MedicineRegenerative capacityReproducibilitySchemeSiteSkeletal MuscleSoldierSurgical suturesSystemTechniquesTestingTherapeuticThickTissue GraftsTissue constructsTissuesTraumatic injuryVascular Endothelial CellVascular blood supplyVascular regenerationVascularizationangiogenesisbasebioinkbiomaterial compatibilitybioprintingcell assemblyclinically relevantdirected differentiationdisabilityfunctional disabilityfunctional restorationhealinghuman pluripotent stem cellimplantationimprovedin vivoinduced pluripotent stem cellinjuredmechanical propertiesmigrationmouse modelmuscle engineeringmuscle formmuscle regenerationnanofibernerve injuryneuromuscularpersonalized medicinephysical propertypoly(glycerol-sebacate)precursor cellquadriceps muscleregeneration functionrepairedrestorationsatellite cellscaffoldself assemblyskeletal muscle wastingstem cell deliverystem cell differentiationsubcutaneoustechnology developmenttraumatic eventtreadmillvehicular accidentvolumetric muscle loss
项目摘要
Project Summary
Volumetric muscle loss (VML) usually occurs following traumatic injury and results in a composite loss of
muscle mass. These injuries manifest in decreased strength and functional impairments. Clinically, these
injuries often heal with fibrosis, as opposed to skeletal muscle regeneration. Current existing therapeutic
options are also insufficient for VML treatment, and complications are often associated with surgical repair
including nerve injury, excessive immune response, infection, scarring, and limitations of tissue graft supply.
Indeed, natural healing and surgical procedures are inefficient in restoring the functionality of injured muscles,
resulting in a poor quality of life. Therefore, developing clinically relevant three-dimensional (3D) tissue using
patient-specific genetically identical cells has emerged as a potential solution to address the above issues. To
achieve this aim, there are two existing main challenges. The first challenge is obtaining large amounts of
patient-specific genetically identical cells. The use of human pluripotent stem cells (hiPSCs) differentiated to
the muscle lineage represents a promising candidate to build upon personalized therapy. However, directing
the differentiation of hiPSCs to the muscle fate along with reproducible differentiation schemes has proven to
be challenging. The second challenge is developing a highly organized and vascularized 3D skeletal muscle
tissue to maintain the viability of cells inside thick tissue constructs via engineered vessel networks.
Furthermore, the fabricated tissues have to strongly integrate into injured site via surgical methods. To address
these challenges, we plan to develop a suturable 3D vascularized muscle tissue from hiPSC-derived myogenic
precursor cells (hiPSC-MPCs) embedded in biomaterials using bioprinting techniques. We will optimize the
recently developed protocols allowing efficient production of functional myofibers from hiPSCs in hydrogels
with tunable mechanical properties and degradable profiles, which mimic the extracellular matrix (ECM) of
native skeletal muscle tissue. To create biomimetic vascularized muscle constructs, a multi-material embedded
bioprinting technique will be used to precisely control the positions of the vascular network and aligned muscle
fibers with biologically relevant architectures. With the conventional bioprinting system, it is difficult to precisely
control the materials’ position in Z directions to create freestanding hydrogel architectures. Also, to achieve
prolonged retention of implants into the injured site and to improve muscle regeneration, a muscle growth
factor (IGF-1) laden suturable graft will be developed. hiPSC-MPCs-laden constructs will be printed on the
suturable graft consisting of IGF-1-laden PGS/GelMA substrates using electrospinning.
项目概要
体积肌肉损失(VML)通常发生在外伤后,并导致复合损失
这些损伤在临床上表现为力量下降和功能障碍。
与目前现有的治疗方法不同,损伤通常会随着纤维化而愈合。
VML 治疗的选择也不足,并且并发症通常与手术修复相关
包括神经损伤、过度免疫反应、感染、疤痕和组织移植供应的限制。
事实上,自然愈合和外科手术对于恢复受伤肌肉的功能效率低下,
因此,使用开发临床相关的三维(3D)组织。
患者特异性基因相同的细胞已成为解决上述问题的潜在解决方案。
要实现这一目标,目前存在两个主要挑战,第一个挑战是获取大量的资源。
使用人类多能干细胞(hiPSC)分化为患者特异性基因相同的细胞。
然而,肌肉谱系是基于个性化治疗的有希望的候选者。
hiPSC 向肌肉命运的分化以及可重复的分化方案已被证明
第二个挑战是开发高度组织化和血管化的 3D 骨骼肌。
通过工程血管网络维持厚组织结构内细胞的活力。
此外,制造的组织必须通过手术方法牢固地融入受伤部位。
针对这些挑战,我们计划从 hiPSC 衍生的肌原性中开发可缝合的 3D 血管化肌肉组织
我们将利用生物打印技术将前体细胞 (hiPSC-MPC) 嵌入生物材料中。
最近开发的协议允许从水凝胶中的 hiPSC 高效生产功能性肌纤维
具有可调节的机械性能和可降解的特性,模仿细胞外基质(ECM)
天然骨骼肌组织,用于创建仿生血管化肌肉结构,一种嵌入的多种材料。
生物打印技术将用于精确控制血管网络和对齐肌肉的位置
使用传统的生物打印系统很难精确地制备具有生物相关结构的纤维。
控制材料在 Z 方向的位置以创建独立的水凝胶结构。
延长植入物在受伤部位的保留时间并改善肌肉再生(肌肉生长)
载有因子 (IGF-1) 的可缝合移植物将被打印在载有 hiPSC-MPC 的结构上。
使用静电纺丝技术,由负载 IGF-1 的 PGS/GelMA 基质组成的可缝合移植物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Ryon Shin其他文献
Su Ryon Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Ryon Shin', 18)}}的其他基金
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 53.65万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10425405 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
- 批准号:
9788446 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10212963 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 53.65万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 53.65万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 53.65万 - 项目类别: