Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells

工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增

基本信息

  • 批准号:
    10374785
  • 负责人:
  • 金额:
    $ 35.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Adult stem cells hold significant therapeutic potential to treat many diseases and injuries. For example, neural progenitor cells (NPCs) are currently being investigated in over 20 clinical trials for use in a variety of indications. Despite their significant clinical relevance, we currently lack the biological mechanistic understanding to efficiently expand NPCs in vitro, even as neurospheres, while maintaining their undifferentiated, regenerative stem phenotype. Recently, 3D matrices have emerged as a tool for stem cell expansion; unfortunately, once encapsulated, NPCs commonly lose their stemness and ability to proliferate. Loss of NPC stemness is also observed in vivo throughout the aging process and in pathological disease states causing diminished ability for NPC self-renewal and biased differentiation. These phenotypic abnormalities are due in part to complex environmental changes in the stem cell niche including altered extracellular matrix biochemical and biomechanical properties. Therefore, we propose the use of a 3D in vitro hydrogel culture platform with controlled matrix biochemistry and biomechanics that will enable the exploration of previously untestable hypotheses on the mechanisms by which the surrounding cell microenvironment influences NPC maintenance, expansion, and differentiation. We will use a family of protein-engineered hydrogels to understand the impact of the matrix microenvironment on human iPSC-derived NPC (hNPC) phenotype. Specifically, we will study the role of matrix biochemical and biomechanical properties on activation of the N-cadherin signaling pathway and downstream hNPC phenotype. In Aim 1, we tune the biochemical cues presented within elastin-like protein (ELP) hydrogels to display a N-cadherin-mimetic peptide. We hypothesize that cell engagement with the artificial N-cadherin will result in downstream -catenin signaling, stemness maintenance, and enhanced symmetric proliferation compared to neurosphere controls. In Aim 2, we tune the biomechanical cues presented by the recombinant ELP hydrogels to enable dynamic matrix remodeling through viscoelastic stress relaxation. We hypothesize that dynamic matrix remodeling will result in increased cell-cell contacts, induction of cellular-based N-cadherin signaling, stemness maintenance, and enhanced symmetric proliferation compared to neurosphere controls. In Aim 3, we evaluate the hypothesis that control of specific matrix material properties to tune N-cadherin presentation and ELP hydrogel mechanics alters outside-in signal transduction that biases hNPC differentiation. The biological mechanisms underlying this process will be explored via changes in nuclear architecture (lamin expression and nuclear morphology) and epigenetics (histone modification and chromosomal organization). Further mechanistic insight will be explored using inhibitors and agonists of key mechanotransduction signaling pathways. Our engineered, modular hydrogels allow us to explore the mechanisms by which specific matrix cues regulate hNPC stem maintenance and differentiation. Given the immense regenerative potential of these cells, our findings will inform the design of a robust in vitro platform for the clinical expansion of hNPCs.
项目摘要 成年干细胞具有治疗许多疾病和损伤的显着治疗潜力。例如,中立 祖细胞(NPC)目前正在进行20多个临床试验中,用于各种适应症。 尽管它们具有很大的临床相关性,但我们目前缺乏生物学机理的理解 即使是神经球,也可以在体外有效扩展NPC,同时保持其未分化的再生 茎表型。最近,3D矩阵已成为干细胞膨胀的工具。不幸的是,一次 封装,NPC通常会失去其干性和增殖能力。 NPC茎的损失也是 在整个衰老过程和病理疾病状态中观察到体内,导致能力降低 NPC自我更新和有偏分化。这些表型异常部分是由于复杂的 干细胞生态位的环境变化,包括改变细胞外基质生化和 生物力学特性。因此,我们建议使用3D体外水凝胶培养平台和受控的 基质生物化学和生物力学,将对先前无法检验的假设进行探索 周围细胞微环境影响NPC维护,扩展和 分化。我们将使用蛋白质工程水凝胶系列来了解基质的影响 人IPSC衍生的NPC(HNPC)表型的微环境。具体而言,我们将研究矩阵的作用 N-钙粘蛋白信号通路和下游激活的生化和生物力学特性 HNPC表型。在AIM 1中,我们调整弹性蛋白样蛋白(ELP)水凝胶中呈现的生化提示 显示N-钙粘蛋白模拟肽。我们假设细胞与人工N-钙黏着蛋白的互动将 导致下游-catenin信号传导,维持干性和增强的对称增殖 与神经圈对照相比。在AIM 2中,我们调整重组提出的生物力学提示 ELP水凝胶可以通过粘弹性应力松弛来重塑动态基质。我们假设这一点 动态基质重塑将导致细胞细胞接触增加,基于细胞的N-钙粘着蛋白的诱导 与神经圈对照相比,信号传导,维持干性和增强的对称增殖。在 AIM 3,我们评估了控制特定基质材料特性对N-钙粘着蛋白的控制的假设 呈现和ELP水凝胶力学改变了偏向HNPC分化的外部信号转导。 该过程的生物学机制将通过核结构的变化探索(层粘连蛋白 表达和核形态)和表观遗传学(组蛋白修饰和染色体组织)。 将使用关键机械转导信号的抑制剂和激动剂来探索进一步的机械洞察力 途径。我们设计的模块化水凝胶使我们能够探索特定基质提示的机制 调节HNPC茎维护和分化。考虑到这些细胞的巨大再生潜力 我们的发现将为HNPC临床扩展的强大体外平台的设计提供信息。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Materials for blood brain barrier modeling in vitro
  • DOI:
    10.1016/j.mser.2019.100522
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    31
  • 作者:
    Ferro, Magali P.;Heilshorn, Sarah C.;Owens, Roisin M.
  • 通讯作者:
    Owens, Roisin M.
共 1 条
  • 1
前往

Sarah C Heilshorn的其他基金

Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
  • 批准号:
    10732139
    10732139
  • 财政年份:
    2023
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
  • 批准号:
    10393001
    10393001
  • 财政年份:
    2021
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
  • 批准号:
    10190479
    10190479
  • 财政年份:
    2021
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
  • 批准号:
    10163255
    10163255
  • 财政年份:
    2020
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
  • 批准号:
    10396051
    10396051
  • 财政年份:
    2020
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
  • 批准号:
    10810271
    10810271
  • 财政年份:
    2020
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
  • 批准号:
    10605191
    10605191
  • 财政年份:
    2020
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Injectable Hydrogels to Protect Transplanted Cells from Hypoxia
可注射水凝胶保护移植细胞免受缺氧影响
  • 批准号:
    10377315
    10377315
  • 财政年份:
    2019
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
  • 批准号:
    10116378
    10116378
  • 财政年份:
    2019
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Engineered matrix microarrays to enhance the regenerative potential of iPSC-derived endothelial cells
工程化基质微阵列可增强 iPSC 衍生内皮细胞的再生潜力
  • 批准号:
    9576990
    9576990
  • 财政年份:
    2018
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:

相似国自然基金

来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
  • 批准号:
    42377093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
  • 批准号:
    52376132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
华北地区大气气溶胶长距离输送条件下单颗粒的来源及老化机制研究
  • 批准号:
    42307141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
  • 批准号:
    52308322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the effects of APOE and APOE-related AD risk genes on human microglia activity and lipid metabolism in aging and disease
研究 APOE 和 APOE 相关 AD 风险基因对衰老和疾病过程中人类小胶质细胞活性和脂质代谢的影响
  • 批准号:
    10900992
    10900992
  • 财政年份:
    2023
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
  • 批准号:
    10671547
    10671547
  • 财政年份:
    2021
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
  • 批准号:
    10313596
    10313596
  • 财政年份:
    2021
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
  • 批准号:
    10477969
    10477969
  • 财政年份:
    2021
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别:
A microphysiologic multicellular organ-on-chip to inform clinical trials in FTD/ALS
为 FTD/ALS 临床试验提供信息的微生理多细胞器官芯片
  • 批准号:
    10204148
    10204148
  • 财政年份:
    2020
  • 资助金额:
    $ 35.21万
    $ 35.21万
  • 项目类别: