Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
基本信息
- 批准号:10671547
- 负责人:
- 金额:$ 3.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAgeAgingAgonistAlzheimer&aposs DiseaseBiochemistryBrainCASP3 geneCalciumCalcium ChannelCalcium SignalingCell DeathChronicClinicalCognitionCognitive deficitsComplementComplement 1qCyclic AMPCyclic AMP-Dependent Protein KinasesCytosolDataDementiaDendritesDisease ProgressionDoseEarly InterventionElderlyEnsureEventExcisionExposure toGenerationsHumanITPR1 geneImageImage AnalysisImmunoelectron MicroscopyImmunofluorescence ImmunologicImmunohistochemistryImpaired cognitionIn SituIn VitroIndividualInositolLate Onset Alzheimer DiseaseLeadLifeMacacaMacaca mulattaMediatingMethodsMicrogliaMitochondriaModelingMolecularMorphologyMusNeurofibrillary TanglesNeuronsPathogenesisPathway interactionsPatientsPhenotypePhosphatidylserinesPhosphorylationPopulationProcessQuality of lifeResearchResolutionRisk FactorsRyanodine Receptor Calcium Release ChannelSignal TransductionSmooth Endoplasmic ReticulumSynapsesTestingTherapeutic InterventionTimeTissuesage relatedagedassociation cortexcostexperimental studyfamilial Alzheimer diseasein vitro Modelinsightinterestmitochondrial dysfunctionmouse modelneurodevelopmentneurotransmissionphosphoric diester hydrolasepreemptquantitative imagingreceptorreconstructionresponsesuperresolution microscopytherapeutic targettripolyphosphate
项目摘要
Abstract: Late-onset Alzheimer’s disease (LOAD) targets the association cortices to cause profound
dementia, and available treatments do not alter disease progression. The greatest risk factor for LOAD is
advanced age, yet it is unknown why the aging association cortices are vulnerable to degeneration. Cognitive
impairment tightly correlates with synapse loss in the dorsolateral prefrontal association cortex (dlPFC), which
subserves higher-order cognition. Mouse models have shown that microglia can remove synapses by
interacting with molecular “tags” on neurons, including complement (C1q) and phosphatidylserine (PS).
However, it is unclear what upstream changes within neurons trigger the generation of these molecules, and
whether these mechanisms are activated in the aging dlPFC. The proposed research will utilize an aged
rhesus macaque model with mechanistic in vitro experiments, to identify the intraneuronal mechanisms that
contribute to synapse loss in the aging association cortex. Aging rhesus macaques have an expanded dlPFC
and naturally develop cognitive deficits, plaques and tangles, complement C1q expression, and region-specific
synapse loss. Aged macaques also develop an abnormal mitochondrial phenotype termed “Mitochondria-on-a-
string” (MOAS) that is seen in human LOAD. I hypothesize that MOAS may arise from chronic calcium (Ca2+)
overload of mitochondria, generating molecules participating in synapse removal, including activated C1q, PS,
and Caspase 3. Synapses in dlPFC are especially vulnerable to Ca2+ dysregulation as they express cAMP-
protein kinase A (PKA) signaling to magnify internal Ca2+ release through ryanodine receptor 2 (RyR2) and
inositol triphosphate receptor type 1 (IP3R1). This process is regulated by the phosphodiesterase PDE4D in
young brain, which is lost with advancing age. I hypothesize that sustained elevations in cytosolic calcium
leads to Ca2+ overload of mitochondria and the induction of MOAS with advancing age, leading to the
expression of molecules (C1q, PS, and cleaved caspase 3) that mediate synapse removal by nearby microglia.
Aims 1 and 2 will utilize high resolution immuno-Electron Microscopy (EM) and 3D EM reconstruction to
elucidate the interactions between MOAS, and (Aim 1) molecules known to mediate synapse removal, and
(Aim 2) markers of Ca2+ dysregulation in the dlPFC of young vs. aged macaques. Preliminary data indicate that
MOAS preferentially associate with C1q and are more frequent under conditions when PDE4D expression is
absent. Aim 3 will use primary murine cortical neuron cultures, immunofluorescence, super-resolution
microscopy, and biochemistry to model Ca2+ dysregulation in vitro and test whether chronically elevated Ca2+
levels can induce the MOAS phenotype and generate the molecules mediating synapse removal. Relevant in
vitro findings will be cross-validated in the macaque tissue. Identification of the intraneuronal events that lead
to synapse loss in the vulnerable aging cortex will provide key insights into how advancing age contributes to
LOAD pathogenesis, and help identify potential targets for early therapeutic interventions.
摘要:晚发性阿尔茨海默氏病(LOAD)以皮质联合作用为目标,导致严重的后果。
痴呆症,并且可用的治疗不会改变疾病进展。 LOAD 的最大危险因素是。
年事已高,但为何衰老相关皮层容易发生认知退化尚不清楚。
损伤与背外侧前额叶联合皮层 (dlPFC) 的突触损失密切相关,
促进高阶认知 小鼠模型表明,小胶质细胞可以通过消除突触。
与神经元上的分子“标签”相互作用,包括补体 (C1q) 和磷脂酰丝氨酸 (PS)。
然而,目前尚不清楚神经元内的哪些上游变化触发了这些分子的产生,并且
这些机制是否在老化的 dlPFC 中被激活。拟议的研究将利用老化的 dlPFC。
恒河猴模型与机制体外实验,以确定神经元内机制
导致衰老联合皮层突触损失的因素 衰老的恒河猴的 dlPFC 会扩大。
并自然形成认知缺陷、斑块和缠结、补充 C1q 表达和区域特异性
老年猕猴也会出现一种异常的线粒体表型,称为“线粒体”。
人类负载中出现的“绳子”(MOAS)我认为MOAS可能是由慢性钙(Ca2+)引起的。
线粒体超载,产生参与突触去除的分子,包括激活的 C1q、PS、
和 Caspase 3。 dlPFC 中的突触特别容易受到 Ca2+ 失调的影响,因为它们表达 cAMP-
蛋白激酶 A (PKA) 信号通过兰尼碱受体 2 (RyR2) 放大内部 Ca2+ 释放,
肌醇三磷酸受体 1 型 (IP3R1) 该过程受磷酸二酯酶 PDE4D 调节。
年轻的大脑随着年龄的增长而丧失,我一直在努力维持细胞质钙的持续升高。
随着年龄的增长,导致线粒体 Ca2+ 超载并诱导 MOAS,从而导致
介导附近小胶质细胞去除突触的分子(C1q、PS 和 cleaved caspase 3)的表达。
目标 1 和 2 将利用高分辨率免疫电子显微镜 (EM) 和 3D EM 重建来
阐明 MOAS 和(目标 1)已知介导突触去除的分子之间的相互作用,以及
(目标 2)年轻猕猴 dlPFC 中 Ca2+ 失调的标志物初步数据表明:
MOAS 优先与 C1q 结合,并且在 PDE4D 表达低的条件下更频繁。
目标 3 将使用原代小鼠皮质神经元培养物、免疫荧光、超分辨率。
显微镜和生物化学在体外模拟 Ca2+ 失调并测试 Ca2+ 是否长期升高
水平可以诱导 MOAS 表型并产生介导突触去除的分子。
体外研究结果将在猕猴组织中进行交叉验证,以鉴定导致的神经元内事件。
脆弱的老化皮质中的突触损失将提供关键的见解,以了解年龄的增长如何促进
LOAD 发病机制,并帮助确定早期治疗干预的潜在目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Ka-yoon Woo其他文献
Elizabeth Ka-yoon Woo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Ka-yoon Woo', 18)}}的其他基金
Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
- 批准号:
10313596 - 财政年份:2021
- 资助金额:
$ 3.25万 - 项目类别:
Investigating the Neuronal Signals Initiating Synapse Loss in Aging and Alzheimer's Disease
研究衰老和阿尔茨海默病中引发突触丢失的神经信号
- 批准号:
10477969 - 财政年份:2021
- 资助金额:
$ 3.25万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
- 批准号:
10658645 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
Reversibility of brain glucose kinetics in type 2 diabetic subjects
2 型糖尿病受试者脑葡萄糖动力学的可逆性
- 批准号:
10664102 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
An Anticoagulation-Free Artificial Placenta Device
一种免抗凝人工胎盘装置
- 批准号:
10741704 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别: