Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
基本信息
- 批准号:10163255
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAnteriorArteriesBiocompatible MaterialsBlood capillariesCardiacCardiac MyocytesCathetersCause of DeathChemicalsChemistryChronicClinicalContractsDNADiffuseDiffusionDoseDrug Delivery SystemsEchocardiographyElastinElementsExertionFamilyFemaleFirefly LuciferasesFormulationFutureGelGene DeliveryGene ExpressionGene Expression ProfilingGenesGeometryGrowth FactorHeartHeart ContractilitiesHistologicHyaluronic AcidHydrazonesHydrogelsImmune responseIn SituIn VitroInfarctionInflammationInjectableInjectionsKineticsLeftLigationMatrix MetalloproteinasesMeasurementMechanicsModelingMolecular WeightMyocardial InfarctionMyocardiumNecrosisOperative Surgical ProceduresPeptide Nucleic AcidsPerformancePharmaceutical PreparationsPlasmidsPropertyProteinsPrunella vulgarisRandomizedRattusRecombinantsRecovery of FunctionReporter GenesRheologySalineSiteStressStromal CellsSurgeonSurgical suturesTherapeuticThinnessTissuesValidationVariantVentricularViscosityWistar Ratsangiogenesisbasebioluminescence imagingbiomaterial compatibilitychemokineclinical translationclinically relevantcombinatorialcrosslinkdensitydesigndosageendothelial stem cellexperimental groupfluorescence imaginggene therapyheart functionhemodynamicsimprovedin vivolocal drug deliverymalemathematical modelmechanical propertiesminimally invasivenovel therapeuticsplacebo grouppre-clinicalpreclinical studypressurepreventprogramsprotein aminoacid sequenceregenerativerepairedtherapeutic genetherapeutic proteintherapeutically effectivetissue regenerationtreatment grouptreatment strategyviscoelasticity
项目摘要
Following myocardial infarction (MI), local tissue remodeling leads to chronically worsening heart function that is
a major cause of death in the US. Several preclinical studies have shown that local delivery of growth factors or
growth factor-encoding genes can significantly improve cardiac function. Unfortunately, effective delivery of
therapeutics to the beating heart remains a formidable challenge, impeding clinical translation of novel drug
therapeutics. The ideal MI drug-delivery system would be catheter injectable, would prevent extrusion out of the
contractile myocardium, and would provide sustained delivery of an effective therapeutic dosage. Unfortunately,
most catheter-injectable biomaterials are weak hydrogels that are rapidly extruded out of contractile heart tissue.
To overcome this clinical challenge, we propose the design of injectable gels that are crosslinked by dynamic
covalent chemistry (DCC) bonds that are strong yet reversible. Thus, these DCC hydrogels combine the clinically
desired properties of being injectable and having the mechanical integrity required for retention in the beating
heart. Specifically, our gels are formed through DCC hydrazone bonds between a chemically modified hyaluronic
acid and a recombinant, elastin-like protein. The resulting gel is enzymatically biodegradable and fully chemically
defined for future potential in FDA studies. In Aim 1, a family of 20 gels with distinct viscoelastic mechanical
properties will be synthesized and characterized for ease of catheter injection and retention in the contracting
heart. We will modulate the viscosity of the gels by altering the molecular weight of hyaluronic acid and the yield
stress of the gel by varying the concentration of a DCC crosslink competitor and perform in vitro and in vivo
quantifications of injectability. In parallel in Aim 2, we evaluate the hypothesis that sustained release of a
regenerative payload can be achieved through combinatorial mixing of drug tethers with distinct cleavage
kinetics. Specifically, our payload is minicircle genes encoding stromal cell-derived factor-1α (SDF-1α), which is
known to induce angiogenesis and improved heart function following MI. This payload is tethered to the injectable
gel via DNA hybridization with peptide nucleic acid (PNA)-peptides. In Aim 3, the gel formulation from Aim 1 with
optimal in vivo retention properties and the drug tether design from Aim 2 with sustained gene release will be
combined into an injectable MI therapy. Functional performance will be evaluated in a preclinical rat MI model
using minicircle genes carrying both SDF-1α and a firefly luciferase reporter gene. Following induction of MI
through ligation of the left anterior descending (LAD) artery, animals will be randomly assigned into either sham
or treatment groups. Treatment animals will receive a 60-μL intramyocardial injection of saline only, hydrogel
only, untethered genes in saline, untethered genes in gel, or tethered genes in gel. Bioluminescence imaging
(days 0, 1, 4, 7, 21, 42, 60, and 90) will be used to monitor gene expression. Functional recovery after MI will be
assessed using echocardiography (days 7, 21) and hemodynamic measurements (day 90). Finally, heart
explants will be analyzed for evidence of necrosis, inflammation, angiogenesis, and tissue regeneration (day 90).
心肌梗死 (MI) 后,局部组织重塑会导致心脏功能长期恶化,
一些临床前研究表明,生长因子或局部给药是导致死亡的主要原因。
生长因子编码基因可以显着改善心脏功能,不幸的是,有效传递。
心脏跳动的治疗仍然是一个巨大的挑战,阻碍了新药的临床转化
理想的 MI 药物输送系统是导管注射式的,可以防止药物被挤出体外。
不幸的是,收缩性心肌将提供持续的有效治疗剂量。
大多数导管注射生物材料是弱水凝胶,会迅速从收缩性心脏组织中挤出。
为了克服这一临床挑战,我们提出了通过动态交联的可注射凝胶的设计
共价化学 (DCC) 键牢固且可逆,因此,这些 DCC 水凝胶结合了临床应用。
所需的可注射特性以及具有保留在打浆中所需的机械完整性
具体来说,我们的凝胶是通过化学改性透明质酸之间的 DCC 腙键形成的。
产生的凝胶可通过酶促生物降解并完全化学降解。
在 Aim 1 中,定义了 20 种具有独特粘弹性力学性能的凝胶的未来潜力。
将综合和表征特性,以便于导管注射和在收缩中保留
我们将通过改变透明质酸的分子量和产量来调节凝胶的粘度。
通过改变 DCC 交联竞争剂的浓度来调节凝胶的应力,并在体外和体内进行
在目标 2 中,我们同时评估了持续释放的假设。
再生有效负载可以通过具有不同裂解的药物系链的组合混合来实现
具体来说,我们的有效负载是编码基质细胞衍生因子-1α(SDF-1α)的小环基因,即
已知可在心肌梗死后诱导血管生成并改善心脏功能。该有效负载与注射剂相连。
通过 DNA 与肽核酸 (PNA)-肽杂交形成凝胶 在目标 3 中,使用来自目标 1 的凝胶制剂。
具有持续基因释放的 Aim 2 的最佳体内保留特性和药物系链设计将是
结合到可注射的 MI 治疗中,将在临床前大鼠 MI 模型中评估功能表现。
在诱导 MI 后,使用携带 SDF-1α 和萤火虫荧光素酶报告基因的小环基因。
通过结扎左前降支(LAD)动脉,动物将被随机分配到假手术组
或治疗组将仅接受60μL盐水、水凝胶的心肌内注射。
仅盐水中的未束缚基因、凝胶中的未束缚基因或凝胶中的束缚基因。
(第 0、1、4、7、21、42、60 和 90 天)将用于监测 MI 后的功能恢复。
使用超声心动图(第 7、21 天)和血流动力学测量(第 90 天)进行评估。
将分析外植体的坏死、炎症、血管生成和组织再生的证据(第90天)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah C Heilshorn其他文献
Sarah C Heilshorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah C Heilshorn', 18)}}的其他基金
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10732139 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10393001 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Imaging the metabolic and phagocytic landscape of microglia in Alzheimer’s disease
对阿尔茨海默病中小胶质细胞的代谢和吞噬景观进行成像
- 批准号:
10190479 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10396051 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10810271 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10605191 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Injectable Hydrogels to Protect Transplanted Cells from Hypoxia
可注射水凝胶保护移植细胞免受缺氧影响
- 批准号:
10377315 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
- 批准号:
10116378 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:
Engineered biomaterials to modulate cell-cell signaling for the robust expansion of stem cells
工程生物材料可调节细胞间信号传导,促进干细胞的强劲扩增
- 批准号:
10374785 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:
Engineered matrix microarrays to enhance the regenerative potential of iPSC-derived endothelial cells
工程化基质微阵列可增强 iPSC 衍生内皮细胞的再生潜力
- 批准号:
9576990 - 财政年份:2018
- 资助金额:
$ 39.63万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Role of prefrontostriatal circuits in effort-based, cost-benefit decision making
前额纹状体回路在基于努力的成本效益决策中的作用
- 批准号:
10737578 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别: