Mechanisms of Physiological Organ Shrinkage
生理器官萎缩的机制
基本信息
- 批准号:10375998
- 负责人:
- 金额:$ 47.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdultAnatomyAnimalsApoptosisApoptoticBehaviorBiologyCalcium OscillationsCeliac DiseaseCell CountCell LineageCell TherapyCell divisionCellsComplexDataDaughterDigestive PhysiologyDiseaseDrosophila genusEndotoxemiaEnterocytesEquationEquilibriumExperimental ModelsFaminesFoodFutureGeneticGiardiasisGoalsGrowthHealthHumanImageIndividualIngestionIntestinesInvertebratesInvestigationKnowledgeLabelLaboratoriesLaboratory StudyMammalsMammary glandMechanicsMethodsMidgutMitosisModelingModernizationMolecularMonitorNutrientOrganOrgan SizeParenteral NutritionPathologicPathway interactionsPeriodicityPhysiologicalProtocols documentationRefractoryRegulationReporterResearchRodentSiblingsSideSignal TransductionSkeletal MuscleSkinSmall IntestinesStarvationTestingTimeTissuesTranscription CoactivatorTranslatingUndifferentiatedWild AnimalsWithdrawalWorkbasebody cavitycell behaviorflyfrontiergenetic manipulationhuman diseasein vivoin vivo monitoringinnovationmature animalmechanical forceoptogeneticspromoterpurgeresponseserial imagingstem cell differentiationstem cell divisionstem cellstoolvirtual
项目摘要
PROJECT SUMMARY
Many adult organs--for instance, intestine, mammary gland, skeletal muscle, skin—respond to reduced
levels of functional demand by shrinking their physical size. In these organs, cells are lost faster than they are
made, leading to a reduction in total cell number. The intestine is a broadly conserved exemplar of demand-
driven organ shrinkage. In wild animals, cyclic periods of starvation cause intestinal size to shrink by 60-75%.
Humans also undergo healthy intestinal shrinkage, but excessive or dysregulated cell loss can quickly become
pathological, as seen in enteropathies like celiac sprue, endotoxemia, and giardiasis. Yet—unlike the
mechanisms that balance cell division/loss during everyday turnover—the mechanisms that tune cell
imbalance for physiological shrinkage are virtually unknown.
The roadblock to mechanistic investigation of intestinal shrinkage has been the lack of a tractable
laboratory model, which must allow cells (and their dynamic behaviors) to be monitored across time and must
possess cell-specific markers and other tools to facilitate mechanistic studies. Historically, studies used
rodents, but modern research protocols cannot replicate natural famine/feast cycles.
My lab has developed a new invertebrate model of intestinal shrinkage that is both tractable and
genetically manipulable: the Drosophila adult midgut, akin to the vertebrate small intestine. We demonstrate
that intestinal shrinkage is conserved in Drosophila, and we document that its underlying basis is the massive
squeezing-out of now-superfluous enterocytes through active extrusion.
Here, we investigate intestinal shrinkage from both sides of the equation for net cellular balance: mature
cell loss (Aim 1) and stem cell capacity (Aim 2). Our studies leverage the midgut’s superlative toolkit of cell-
specific genetic reporters and our own pioneering innovations for real-time and longitudinal imaging of
functioning midguts inside live animals. In Aim 1, we ask how the gut senses loss of ingested food—
mechanical compression, lack of nutrients, or both. We test if two known regulators of extrusion, the
transcriptional co-activator YAP/Yorkie and intercellular Ca2+ waves, function during shrinking to increase
extrusions. Third, we probe whether a shrinking gut regulates cell extrusions at the organ scale or at the level
of individual cells. In Aim 2, we seek the mechanisms that cause a 75% culling of the stem cell pool during
shrinkage—even as stem cell mitoses paradoxically increase. We will test if stem cells initiate non-self-
renewing divisions, adopt terminal fates directly, and/or activate apoptosis.
The fly gut’s digestive physiology, stem cell lineages, and molecular regulation are similar to humans.
Hence by elucidating the cell-to-organ scale mechanisms that operate at this frontier of tissue biology, this
project may yield leads for therapies to treat cellular imbalances in human disease.
项目摘要
许多成年器官 - 实例,肠道,乳腺,骨骼肌,皮肤 - 响应减少
功能需求水平通过缩小其身体大小。在这些器官中,细胞损失的速度比它们更快
制造,导致总细胞数量减少。肠道是需求的广泛保守的典范 -
驱动器官收缩。在野生动物中,饥饿的循环周期会导致肠道大小缩小60-75%。
人类还经历健康的肠道收缩
如腹腔泉,内毒素血症和贾第鞭毛疾病等肠道外植物中所见。然而 - 不像
平衡细胞分裂/每天营业额损失的机制 - 调整电池的机制
物理收缩的不平衡实际上是未知的。
肠收缩的机械投资的障碍是缺乏可行的
实验室模型,必须允许细胞(及其动态行为)跨时间监控,并且必须
拥有特异性标记和其他工具来促进机械研究。从历史上看,使用研究
啮齿动物,但现代研究方案无法复制自然农场/盛宴周期。
我的实验室已经开发了一种新的无脊椎动物肠收缩模型
遗传操作:果蝇成年中肠,类似于脊椎动物小肠。我们证明
肠道收缩在果蝇中是保守的,我们记录了它的基础是巨大的
通过主动延伸挤出现在呈现的肠细胞。
在这里,我们研究了从方程式两侧的肠收缩以进行净细胞平衡:成熟
细胞丢失(AIM 1)和干细胞容量(AIM 2)。我们的研究利用中肠的细胞最高级工具包
特定的遗传记者和我们自己的开创性创新,用于实时和纵向成像
活动物中的中肠运行。在AIM 1中,我们询问肠道感觉如何失去摄入的食物 -
机械压缩,缺乏营养或两者兼而有之。我们测试了两个已知的扩展调节剂,
转录共激活器yap/Yorkie和细胞间Ca2+波,在收缩期间的功能增加以增加
扩展。第三,我们探测收缩的肠道是否调节器官尺度或水平的细胞延伸
单个细胞。在AIM 2中,我们寻求引起75%干细胞池的机制
收缩 - 即使是干细胞有丝分裂的矛盾增加。我们将测试干细胞是否启动非自身
更新划分,直接采用末端命运和/或激活凋亡。
蝇肠的消化生理学,干细胞谱系和分子调节类似于人类。
因此,通过阐明在组织生物学领域运作的细胞到器官量表机制,
项目可能会产生用于治疗人类疾病细胞失衡的疗法的铅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucy Erin O'brien其他文献
Lucy Erin O'brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucy Erin O'brien', 18)}}的其他基金
Multiparametric deep tissue microscope for in vivo and in vitro imaging
用于体内和体外成像的多参数深层组织显微镜
- 批准号:
10426767 - 财政年份:2022
- 资助金额:
$ 47.89万 - 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
- 批准号:
9894811 - 财政年份:2016
- 资助金额:
$ 47.89万 - 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
- 批准号:
9247213 - 财政年份:2016
- 资助金额:
$ 47.89万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8809752 - 财政年份:2015
- 资助金额:
$ 47.89万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8987560 - 财政年份:2015
- 资助金额:
$ 47.89万 - 项目类别:
Nutrient regulation of stem cell mediated intestinal renewal in Drosophila
干细胞介导的果蝇肠道更新的营养调节
- 批准号:
8215874 - 财政年份:2010
- 资助金额:
$ 47.89万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 47.89万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 47.89万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 47.89万 - 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10852318 - 财政年份:2023
- 资助金额:
$ 47.89万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 47.89万 - 项目类别: