Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning

习惯形成中的纹状体可塑性作为解构适应性学习的平台

基本信息

  • 批准号:
    9789068
  • 负责人:
  • 金额:
    $ 99.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT A distinguishing feature of the brain is that its circuitry isn’t computationally static, it adapts to experience. Understanding the circuit mechanisms for adaptive behavior carries two-fold potential benefits - revealing the brain’s learning rules and identifying key behaviorally significant functional “nodes”. These nodes suggest potent sites to target for therapy development and may also be instructive to suggest more basic circuit principles underlying behavior. Using striatal circuitry and habit learning as a model system, we recently uncovered a set of paradigm- challenging findings in a striatum-dependent habit learning task. In particular, we discovered a new circuit-level signature, termed dviLP (direct vs indirect Latency Plasticity), which distinguishes striatal slices prepared from habitual vs goal-directed animals. The features of dviLP shift long-held attention on rate differences between the two principle projection neuron types, those to the direct and indirect pathways, to consider that behaviorally adaptive signals may be generated by plasticity of their relative timing to fire. Moreover, the origin of this plasticity appears to involve striatal fast-spiking interneurons, a highly non-canonical site for the expression of long-lasting plasticity. Beginning with this highly novel foundation, here we propose to generate a robust predictive computational model for striatal-dependent learning mechanisms by joining multiple disciplines and multiple levels of analysis through an iterative process of circuit modeling and experimentation. In Aim 1, we will comprehensively map functional changes in synaptic and cellular activity that define the behavioral transition from goal-directed to habitual in an operant lever press task. We will use a layered suite of molecular genetic tools to assign coordinates that specify inputs, outputs, compartments (striosome/matrix) and regions (medial, dorsal). In Aim 2, we will measure the activity of genetically specified components of the striatum in behaving mice, identifying the dynamic changes that correlate with and cause the shift from goal- directed to habitual behavior. Our team offers multidisciplinary strengths. Dr. Calakos and Yin have expertise in habit behavior, plasticity mechanisms and in vivo circuit dynamics; ideal for spearheading this effort. The success and impact of this effort will be amplified by tightly incorporating Dr. Brunel’s expertise in computationally modeling brain learning mechanisms and Dr. Tadross’s novel pharmacogenetic reagents that are ideally positioned to test causality of synaptic plasticity events, offering the unique opportunity to manipulate a specific synaptic receptor in a genetically defined cell type. Ultimately, we expect that the knowledge gained through this highly collaborative proposal will provide a foundational resource to accelerate understanding of striatal learning rules for adaptive behavior.
抽象的 大脑的一个显着特征是电路是不下一个计算静态的,它适应 经验。 陶醉于大脑的学习规则,并确定关键的行为重要功能“节点” 建议对治疗开发目标的有效部位也有启发性地提出更多基础 电路原则的基本行为。 使用纹状体回路和习惯学习作为模型系统,我们最近发现了一组范式 尤其是养生的习惯学习任务,我们发现了一个新的电路级别 签名,称为DVILP(直接与间接延迟塑料),将纹状体切片与准备的纹状体切片与 习惯性与目标的动物。 两种主要投射神经元类型,即直接和间接途径的类型,以考虑 行为自适应信号可能是通过其相对时机的塑料来产生的 这种塑料似乎涉及纹状体快速刺激性中间纽扣,这是一个高度非典型的位点。 持久的塑性表达。 通过加入多个纹状体依赖性学习机制的强大预测计算模型 学科以及电路建模和经验分析的多个级别。 在AIM 1中,我们将全面绘制突触和细胞活动的功能变化,以定义 从目标指导到操作杆的习惯性的行为过渡。 分子遗传工具工具对指定输入,输出,隔室(striosome/artrix)的倾向 和区域(内侧,背面)。 行为小鼠的纹状体,确定与目标相关的动态变化并导致从目标转移 指向习惯性行为。 习惯行为,塑料机制和体内电路动力学; 这项工作的成功和影响将通过紧密地侵犯布鲁内尔博士的专业知识来扩大 在计算上建模脑学习机制和塔德罗斯博士的新型药物遗传学试剂 理想的位置可以测试突触事件的因果关系,从而提供了独特的机会 在遗传定义的细胞类型中操纵特定的突触受体。 知识获得了高度协作的建议将为加速提供基础资源 了解适应性行为的纹状体学习规则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NICOLE CALAKOS其他文献

NICOLE CALAKOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NICOLE CALAKOS', 18)}}的其他基金

Significance of Protein Synthesis by the Integrated Stress Response in Neuromodulatory Neurons for Adaptive Behavior and Synaptic Plasticity
神经调节神经元综合应激反应蛋白质合成对适应性行为和突触可塑性的意义
  • 批准号:
    10718345
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning
习惯形成中的纹状体可塑性作为解构适应性学习的平台
  • 批准号:
    10451714
  • 财政年份:
    2018
  • 资助金额:
    $ 99.44万
  • 项目类别:
Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning
习惯形成中的纹状体可塑性作为解构适应性学习的平台
  • 批准号:
    10207803
  • 财政年份:
    2018
  • 资助金额:
    $ 99.44万
  • 项目类别:
Novel high-throughput screening for modifiers of TorsinA pathology
TorsinA 病理修饰因子的新型高通量筛选
  • 批准号:
    8517913
  • 财政年份:
    2013
  • 资助金额:
    $ 99.44万
  • 项目类别:
Novel high-throughput screening for modifiers of TorsinA pathology
TorsinA 病理修饰因子的新型高通量筛选
  • 批准号:
    8634153
  • 财政年份:
    2013
  • 资助金额:
    $ 99.44万
  • 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
  • 批准号:
    8215517
  • 财政年份:
    2012
  • 资助金额:
    $ 99.44万
  • 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
  • 批准号:
    8415843
  • 财政年份:
    2012
  • 资助金额:
    $ 99.44万
  • 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
  • 批准号:
    8743424
  • 财政年份:
    2012
  • 资助金额:
    $ 99.44万
  • 项目类别:
Novel Genetic Mouse Model to Study the Consequences of TorsinA Dysfunction
研究 TorsinA 功能障碍后果的新型基因小鼠模型
  • 批准号:
    8114531
  • 财政年份:
    2011
  • 资助金额:
    $ 99.44万
  • 项目类别:
Novel Genetic Mouse Model to Study the Consequences of TorsinA Dysfunction
研究 TorsinA 功能障碍后果的新型基因小鼠模型
  • 批准号:
    8287547
  • 财政年份:
    2011
  • 资助金额:
    $ 99.44万
  • 项目类别:

相似国自然基金

跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
磺胺-季铵聚合物表面微酸响应灵敏度调控及其自适应抗菌行为
  • 批准号:
    22305069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人工智能技术和动态自适应复杂网络的男男同性性行为者HIV早期感染防控
  • 批准号:
    72374153
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
个体行为演化的动态自适应网络模型分析与优化策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于二型模糊神经网络驾驶行为预测的无人车自适应滑模跟驰控制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular tuning of sensory systems in octopus
章鱼感觉系统的分子调节
  • 批准号:
    10537518
  • 财政年份:
    2022
  • 资助金额:
    $ 99.44万
  • 项目类别:
Molecular tuning of sensory systems in octopus
章鱼感觉系统的分子调节
  • 批准号:
    10678648
  • 财政年份:
    2022
  • 资助金额:
    $ 99.44万
  • 项目类别:
Cortical Interneuron Dysfunction in Fragile X Syndrome
脆性 X 综合征中的皮质中间神经元功能障碍
  • 批准号:
    10599332
  • 财政年份:
    2022
  • 资助金额:
    $ 99.44万
  • 项目类别:
Cortical Interneuron Dysfunction in Fragile X Syndrome
脆性 X 综合征中的皮质中间神经元功能障碍
  • 批准号:
    10418431
  • 财政年份:
    2022
  • 资助金额:
    $ 99.44万
  • 项目类别:
Regulation of instructive signaling in the cerebellum
小脑指导信号的调节
  • 批准号:
    10237314
  • 财政年份:
    2018
  • 资助金额:
    $ 99.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了