Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy

用于评估乳腺癌治疗反应的定量图像分析

基本信息

  • 批准号:
    9249507
  • 负责人:
  • 金额:
    $ 50.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The goal of this research is to develop quantitative image-based surrogate markers of breast cancer tumors for use in predicting response to therapy and ultimately aiding in patient management. There is a large variation in the clinical presentation of breast cancer in women, and it has been shown that in many instances, biological characteristics, i.e., features, of the primary tumor correlate with outcome. Methods to assess such biological features for the prediction of outcome, however, may be invasive, expensive or not widely available. Our hypothesis is that MRI-based features obtained through quantitative image analysis will prove useful as non-invasive biomarkers for the assessment of, and prediction of, the response of breast cancer to neoadjuvant therapy. We propose to validate such image-based biomarkers using magnetic resonance (MR) images of breast tumors from the ACRIN 6657 clinical trial, which includes pathological response data. Specifically, (1) We will investigate the relationship of breast cancer therapy outcome and MR image-based tumor characteristics (features), and changes in these features over time, using a University of Chicago database and the ACRIN 6657 I-SPY clinical trial dataset of breast cancer tumors from patients who have undergone neoadjuvant treatment, (2) We will develop and evaluate the MRI-derived `signatures' of breast cancer tumors for the prediction of, and assessment of, response to therapy using the ACRIN 6657 dataset, and (3) We will conduct preliminary, initial stratification and association of the MRI features with cancer subtype and other clinical/histopathological data from the ACRIN dataset. We will build on our 25-year history of taking innovation to the clinical setting by extending our prior development, validation, and translation of quantitative image analysis methods for computer- aided diagnosis to the post-diagnosis, predictive component in order to assess response to neoadjuvant therapy. Our research addresses the development and validation of algorithms using the existing ACRIN 6657 dataset with the goal of "improving the ability to measure the response of targeted tumors to therapy quantitatively". Our proposed research is aligned with the QIN U01 PAR-11-150 goals of including robustness investigations and multi-site trial data (UChicago and ACRIN). Through this QIN grant, our participation in the QIN community will yield deliverables including an open-platform system that will provide tools for linking segmentation/feature extraction/classification, for comparing performance metrics across acquisition and/or analysis systems, and for discovery through dimension reduction techniques. Our research will yield a set of validated lesion signatures that will serve as quantitative tools for use in clinical studies/trials to predict and/or assess tumor response. Given that other studies/trials may use different treatments, we will make available to the QIN community our tools for training, testing, and presenting the the quantitative signatures so that predictive signatures for a range of treatments can be determined.
 描述(由适用提供):这项研究的目的是开发基于定量图像的乳腺癌肿瘤的替代标志物,以预测对治疗的反应,并最终有助于患者管理。女性乳腺癌的临床表现有很大的差异,并且已经表明,在许多情况下,原发性肿瘤的生物学特征(即特征)与预后相关。方法 但是,评估此类生物学特征以预测结果,可能是侵入性的,昂贵的或不可广泛的。我们的假设是,通过定量图像分析获得的基于MRI的特征将被证明可作为无创生物标志物用于评估乳腺癌对新辅助治疗的反应的非侵入性生物标志物。我们建议使用ACRIN 6657临床试验的乳腺肿瘤的磁共振(MR)图像验证基于图像的生物标志物,其中包括病理反应数据。具体,(1)我们将 Investigate the relationship of breast cancer therapy outcome and MR image-based tumor characteristics (features), and changes in these features over time, using a University of Chicago database and the ACRIN 6657 I-SPY clinical trial dataset of breast cancer tumors from patients who have undergone neoadjuvant treatment, (2) We will develop and evaluate the MRI-derived `signatures' of breast cancer tumors for the prediction of, and assessment of, response to therapy using the ACRIN 6657数据集和(3)我们将从ACRIN数据集中进行MRI特征与癌症亚型和其他临床/组织病理学数据的初步分层和关联。我们将通过扩展我们先前的开发,验证和对计算机辅助诊断后诊断的定量图像分析方法进行创新的25年历史,以进行诊断,预测性成分,以评估对新辅助治疗的反应。我们的研究使用现有的ACRIN 6657数据集解决了算法的开发和验证,其目的是“提高定量治疗的靶向肿瘤对治疗的反应”。我们提出的研究与QIN U01 PAR-11-150的目标保持一致,即鲁棒性调查和多站点试验数据(Uchicago和Acrin)。通过这项QIN赠款,我们参与QIN社区将产生可交付成果,包括开放平台系统,该系统将提供用于链接细分/特征提取/分类的工具,以比较跨采集和/或分析系统的性能指标,以及通过减少维度的技术进行发现。我们的研究将产生一系列经过验证的病变特征,这些病变将用作临床研究/试验的定量工具,以预测和/或评估肿瘤反应。鉴于其他研究/试验可能会使用不同的治疗方法,我们将为QIN社区提供我们的培训,测试和介绍定量签名的工具,以便可以确定一系列治疗方法的预测签名。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Maryellen L. Giger其他文献

Automating tumor segmentation and tumor enhancement quantification of I-SPY2 data
I-SPY2 数据的自动化肿瘤分割和肿瘤增强量化
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arden Frantzen;Heather M. Whitney;Hui Li;K. Drukker;A. Edwards;J. Papaioannou;Maryellen L. Giger
    Arden Frantzen;Heather M. Whitney;Hui Li;K. Drukker;A. Edwards;J. Papaioannou;Maryellen L. Giger
  • 通讯作者:
    Maryellen L. Giger
    Maryellen L. Giger
Quantitative analysis of high-plex immunofluorescence microscopy images to investigate the breast cancer tumor microenvironment
定量分析高复数免疫荧光显微镜图像以研究乳腺癌肿瘤微环境
MIDRC-MetricTree: a decision tree-based tool for recommending performance metrics in artificial intelligence-assisted medical image analysis
MIDRC-MetricTree:基于决策树的工具,用于推荐人工智能辅助医学图像分析中的性能指标
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    K. Drukker;B. Sahiner;Tingting Hu;G. H. Kim;Heather M. Whitney;Natalie M. Baughan;Kyle J. Myers;Maryellen L. Giger;Michael McNitt
    K. Drukker;B. Sahiner;Tingting Hu;G. H. Kim;Heather M. Whitney;Natalie M. Baughan;Kyle J. Myers;Maryellen L. Giger;Michael McNitt
  • 通讯作者:
    Michael McNitt
    Michael McNitt
Computer-aided detection of clustered microcalcifications
计算机辅助检测簇状微钙化
Computer-aided detection and diagnosis of breast cancer.
乳腺癌的计算机辅助检测和诊断。
共 9 条
  • 1
  • 2
前往

Maryellen L. Giger的其他基金

Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
  • 批准号:
    10674035
    10674035
  • 财政年份:
    2021
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌病灶构成及影像学定量分析
  • 批准号:
    10316696
    10316696
  • 财政年份:
    2021
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Protected Radiomics Analysis Commons for Deep Learning in Biomedical Discovery
生物医学发现中深度学习的受保护放射组学分析共享
  • 批准号:
    9494294
    9494294
  • 财政年份:
    2018
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy
用于评估乳腺癌治疗反应的定量图像分析
  • 批准号:
    8889341
    8889341
  • 财政年份:
    2015
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
  • 批准号:
    8439678
    8439678
  • 财政年份:
    2013
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
  • 批准号:
    8835068
    8835068
  • 财政年份:
    2013
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
  • 批准号:
    8978083
    8978083
  • 财政年份:
    2013
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
  • 批准号:
    9438084
    9438084
  • 财政年份:
    2013
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
PROGRAM 5 (ADVANCED IMAGING)
计划 5(高级成像)
  • 批准号:
    7714259
    7714259
  • 财政年份:
    2008
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Optimization of CAD Output in Breast Imaging
乳腺成像 CAD 输出的优化
  • 批准号:
    7268049
    7268049
  • 财政年份:
    2006
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:

相似国自然基金

面向掌纹识别的安全与隐私保护理论和方法研究
  • 批准号:
    62376211
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
  • 批准号:
    72304093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
  • 批准号:
    62306195
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
  • 批准号:
    72381240026
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
  • 批准号:
    42307496
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
  • 批准号:
    10741022
    10741022
  • 财政年份:
    2023
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Integrating liquid biopsy-based epigenetic and imaging modalities to evaluate disease response in multiple myeloma
整合基于液体活检的表观遗传学和成像方式来评估多发性骨髓瘤的疾病反应
  • 批准号:
    10651370
    10651370
  • 财政年份:
    2023
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 50.37万
    $ 50.37万
  • 项目类别: