Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌病灶构成及影像学定量分析
基本信息
- 批准号:10316696
- 负责人:
- 金额:$ 69.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeBenignBiologicalBiological MarkersBiopsyBreastBreast Cancer DetectionBreast Cancer Early DetectionCancer DetectionCharacteristicsClinicalCommunitiesComplementComputer AssistedContrast MediaDiagnosisDiagnosticDiagnostic ImagingDiagnostic SpecificityDigital Breast TomosynthesisDigital MammographyEffectivenessEmerging TechnologiesFDA approvedGoalsHealthHormone ReceptorImageImage AnalysisLesionLipidsMachine LearningMalignant - descriptorMalignant NeoplasmsMammary Gland ParenchymaMammographyMeasuresMethodsMissionModelingMorphologyOutcomePainParticipantPerformancePersonal SatisfactionProbabilityProceduresProteinsProtocols documentationPublic HealthReaderRecommendationResearchResearch SupportRisk FactorsSensitivity and SpecificitySpecificitySystemTechnologyTextureTissuesUnited States National Institutes of HealthWaterWomanbreast cancer diagnosisbreast densitybreast imagingbreast lesioncancer subtypescancer typeclinical riskclinical translationcomputer aided detectioncontrast enhanceddeep learningdesigndiagnostic accuracydiagnostic screeningdisorder preventionexperiencehuman diseaseimaging systemimprovedinnovationinsightmalignant breast neoplasmmedical specialtiesprogramsprospectivequantitative imagingradiologistresearch clinical testingscreeningstandard of caretomosynthesistool
项目摘要
Project Summary/Abstract. Women with dense breast have not been shown to benefit by increased cancer
detection of volumetric digital breast tomosynthesis (DBT) but may benefit by lower recall rates. DBT screening
biopsy rates are similar to 2D digital mammography; higher for first screening exams, lower thereafter with
adjustment for age and breast density. In the U.S., 71% of biopsies do not result in a breast cancer diagnosis
among women ages 40-79 who undergo breast cancer screening. To address the high rate of unnecessary
biopsies, an innovative way to use FDA-approved breast imaging protocols has been developed to acquire
multispectral images to measure the lipid/water/protein (L/W/P) composition of suspicious breast lesions.
Malignant breast tissue has unique L/W/P composition fractions when compared to normal or benign breast
tissue. This proposal aims to increase biopsy yield (BI-RADS-PPV3) through combining L/W/P biological
biomarkers with quantitative morphological and textural image analysis. This combination of composition and
physical descriptions of suspicious breast lesions is called q3CB. The benefits of adding q3CB to the current
DBT screening/diagnostic imaging paradigm, that may already include computer aided detection, is not known.
This study is designed to compare the expected biopsy yield with and without q3CB in a clinical reader study
and explore how q3CB may be combine with existing technologies. The central hypothesis is that biological
L/W/P fractions in breast tissue in combination with analysis of morphological and textural tissue
characteristics will yield significantly higher breast cancer specificity than conventional interpretation of DBT
alone. The objective is to better identify suspicious breast lesions that need to be biopsied for malignancy in
women currently recommended for biopsy. The long-term goal is to reduce unnecessary biopsies and increase
biopsy yield. Our rationale for the proposed research is that biological L/W/P descriptions of breast lesions will
lead to more specific biopsy decisions and a better understanding of cancer types. Specifically, the project
aims are 1) develop q3CB lesion signatures for distinguishing breast cancer lesions from benign lesions, using
600 prospectively-acquired DBT exams of women recommended to undergo biopsy; 2) conduct a clinical
reader study to compare radiologists' performance on standard-of-care FFDM or DBT without and with the
inclusion of q3CB signatures; 3) Investigate the utility of q3CB lesion signatures in a screening paradigm to
improve sensitivity and specificity on CADe-identified suspicious lesions in the tasks of assessing malignancy
as well as in associating with their association with cancer subtypes; Exploratory) explore the added sensitivity
and specificity of dual-energy DBT in phantom studies that explore lesion size, composition, and breast
density. The innovation of this study is the full characterization of lipid/water/protein lesion composition with
DBT and how it complements existing computer aided diagnostic programs paired with clinical radiologists
providing evidence ready for clinical translation of this unique and emerging technology.
项目摘要/摘要。乳腺肿大的妇女尚未受益于癌症
检测体积数字乳房合成(DBT),但可能会受益于较低的召回率。 DBT筛选
活检率类似于2D数字乳房摄影;首次筛选考试较高,此后较低
调整年龄和乳房密度。在美国,有71%的活检不会导致乳腺癌诊断
在40-79岁的妇女中,他们接受了乳腺癌筛查。解决不必要的高率
活检是一种使用FDA批准的乳房成像协议的创新方式来获取
多光谱图像测量可疑乳房病变的脂质/水/蛋白质(L/W/P)组成。
与正常或良性乳房相比,恶性乳腺组织具有独特的L/W/P组成部分
组织。该建议旨在通过结合L/W/P生物学来提高活检产量(BI-RADS-PPV3)
具有定量形态和质地图像分析的生物标志物。构图和
可疑乳房病变的物理描述称为Q3CB。将Q3CB添加到电流的好处
DBT筛选/诊断成像范式(可能已经包括计算机辅助检测)尚不清楚。
这项研究旨在比较临床读者研究中有和没有Q3CB的预期活检产量
并探讨Q3CB如何与现有技术结合使用。中心假设是生物学
乳腺组织中的L/W/P级分与形态和质地组织的分析结合
与DBT的常规解释相比,特征将产生明显更高的乳腺癌特异性
独自的。目的是更好地识别需要进行活检的可疑乳房病变
妇女目前建议进行活检。长期目标是减少不必要的活检并增加
活检产量。我们对拟议研究的理由是,乳房病变的生物学L/W/P描述
导致更具体的活检决策和对癌症类型的更好理解。具体来说,该项目
目的是1)开发Q3CB病变特征,以区分乳腺癌病变和良性病变,并使用
600名前瞻性获得的DBT考试建议进行活检; 2)进行临床
读者的研究比较放射科医生在没有和与dbt的标准标准FFDM或DBT上的表现
包括Q3CB签名; 3)调查在筛选范式中Q3CB病变特征的实用性
在评估恶性肿瘤的任务中,提高对CADE识别的可疑病变的敏感性和特异性
以及与癌症亚型的关联;探索)探索增加的灵敏度
在探索病变大小,组成和乳房的幻影研究中双能DBT的特异性
密度。这项研究的创新是脂质/水/蛋白质病变组成的全部表征
DBT及其如何补充现有的计算机辅助诊断程序与临床放射科医生配对
为这项独特而新兴技术的临床翻译提供了证据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryellen L. Giger其他文献
Automating tumor segmentation and tumor enhancement quantification of I-SPY2 data
I-SPY2 数据的自动化肿瘤分割和肿瘤增强量化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arden Frantzen;Heather M. Whitney;Hui Li;K. Drukker;A. Edwards;J. Papaioannou;Maryellen L. Giger - 通讯作者:
Maryellen L. Giger
Quantitative analysis of high-plex immunofluorescence microscopy images to investigate the breast cancer tumor microenvironment
定量分析高复数免疫荧光显微镜图像以研究乳腺癌肿瘤微环境
- DOI:
10.1117/12.3027025 - 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Madeleine S. Torcasso;Frederick M. Howard;Yuanyuan Zha;Junting Ai;Marcus R. Clark;Maryellen L. Giger - 通讯作者:
Maryellen L. Giger
MIDRC-MetricTree: a decision tree-based tool for recommending performance metrics in artificial intelligence-assisted medical image analysis
MIDRC-MetricTree:基于决策树的工具,用于推荐人工智能辅助医学图像分析中的性能指标
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
K. Drukker;B. Sahiner;Tingting Hu;G. H. Kim;Heather M. Whitney;Natalie M. Baughan;Kyle J. Myers;Maryellen L. Giger;Michael McNitt - 通讯作者:
Michael McNitt
Computer-aided detection of clustered microcalcifications
计算机辅助检测簇状微钙化
- DOI:
10.1109/icsmc.1992.271592 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
R. M. Nishikawa;Yulei Jiang;Maryellen L. Giger;Kunio Doi;C. Vyborny;R. A. Schmidt - 通讯作者:
R. A. Schmidt
Computer-aided detection and diagnosis of breast cancer.
乳腺癌的计算机辅助检测和诊断。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
C. Vyborny;C. Vyborny;Maryellen L. Giger;R. M. Nishikawa - 通讯作者:
R. M. Nishikawa
Maryellen L. Giger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryellen L. Giger', 18)}}的其他基金
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
10674035 - 财政年份:2021
- 资助金额:
$ 69.8万 - 项目类别:
Protected Radiomics Analysis Commons for Deep Learning in Biomedical Discovery
生物医学发现中深度学习的受保护放射组学分析共享
- 批准号:
9494294 - 财政年份:2018
- 资助金额:
$ 69.8万 - 项目类别:
Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy
用于评估乳腺癌治疗反应的定量图像分析
- 批准号:
8889341 - 财政年份:2015
- 资助金额:
$ 69.8万 - 项目类别:
Quantitative Image Analysis for Assessing Response to Breast Cancer Therapy
用于评估乳腺癌治疗反应的定量图像分析
- 批准号:
9249507 - 财政年份:2015
- 资助金额:
$ 69.8万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8439678 - 财政年份:2013
- 资助金额:
$ 69.8万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8835068 - 财政年份:2013
- 资助金额:
$ 69.8万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
8978083 - 财政年份:2013
- 资助金额:
$ 69.8万 - 项目类别:
Lesion Composition and Quantitative Imaging Analysis on Breast Cancer Diagnosis
乳腺癌诊断中的病灶构成和定量影像分析
- 批准号:
9438084 - 财政年份:2013
- 资助金额:
$ 69.8万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Brain blood flow, oxygenation, and cognition in adult onset iron deficiency anemia
成人缺铁性贫血的脑血流量、氧合和认知
- 批准号:
10735765 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别:
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别:
Novel modalities for prostate cancer screening: mast cells as predictors of disease, disease aggressiveness and marks of disease disparity
前列腺癌筛查的新方法:肥大细胞作为疾病、疾病侵袭性和疾病差异标志的预测因子
- 批准号:
10650620 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别:
Optimizing Treatment Decision Making for Patients with Localized Renal Mass
优化局部肾脏肿块患者的治疗决策
- 批准号:
10734606 - 财政年份:2023
- 资助金额:
$ 69.8万 - 项目类别: