Harnessing Motoneuron Activity: From Lab to Clinic
利用运动神经元活动:从实验室到诊所
基本信息
- 批准号:8079038
- 负责人:
- 金额:$ 55.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAgingAlgorithmsArtificial IntelligenceBiomedical EngineeringBostonCharacteristicsClinicClinicalClinical MarkersComputer softwareComputersDevelopmentElderlyElectrodesEngineeringExerciseHuman ResourcesIndividualLaboratoriesLeadLeadershipManufacturer NameMedicineModelingModificationMotorMotor NeuronsNeurologyPerformancePhysical activityProcessRehabilitation therapyShapesSignal TransductionSourceStagingSurfaceSystemSystems DevelopmentTechnologyTestingTimeUniversitiesWolvesWorkadvanced systemage relatedcommercializationcomputerized data processingdesignimprovedmarkov modelmathematical modelmedical schoolsmeetingsmotor controlneuroadaptationneuromuscular systemnew technologyprogramsrelating to nervous systemsoftware development
项目摘要
DESCRIPTION (provided by applicant): We propose to continue the development of an automatic system that will accurately and quickly decompose electromyographic (EMG) signals into their constituent action potentials and provide the timing of every firing of a set of concurrently active motor units. This information will enable a wide range of studies to investigate the workings of the healthy and diseased neuromuscular system. We will improve the performance of the decomposition algorithms by incorporating new Artificial Intelligence concepts, and a new multi-strategy Hidden Markov Model (HMM) processing stage, to address signal decomposition challenges that cannot be met by the present technology. We will improve the present accuracy from typically 85% for 8 concurrently active motor units to greater than 96% for up to 15 concurrently active motor units. We will also design and build the hardware and software for a stand-alone portable system that may be used in the laboratory or clinic. Then we will transfer the system to a manufacturer for commercialization. In so doing we will produce, for the first time, an advanced system for conveniently and accurately obtaining the firings of a large group of concurrently active motor units from an EMG signal. The new technology will be tested in two applied studies that will be carried out concurrently with the technical developments. One will investigate neural modifications in the firing characteristics of motor units as a function of aging and physical activity. The other will investigate the mitigating effects of resistive exercise on age-related neural adaptations, culminating in the development of a clinical marker to estimate the likelihood that an elderly individual will benefit from an exercise program. The proposed BRP will be lead by Drs. De Luca, Roy, and Adam, key personnel from Boston University (BU) with expertise in biomedical engineering and EMG system development. Signal processing/software development will be provided by the leadership from Dr. Nawab through BU's Department of Electrical and Computer Engineering. Clinical expertise on aging/motor control will be provided by Dr. Novak, from The Department of Neurology at BU School of Medicine, and through Dr. Wolf, from the Department of Rehabilitation Medicine at the Emory University School of Medicine in Atlanta
描述(由申请人提供):我们建议继续开发一种自动系统,该系统将准确、快速地将肌电图(EMG)信号分解为其组成的动作电位,并提供一组同时活动的运动单元的每次发射的时间。这些信息将使广泛的研究能够调查健康和患病神经肌肉系统的运作情况。我们将通过结合新的人工智能概念和新的多策略隐马尔可夫模型(HMM)处理阶段来提高分解算法的性能,以解决现有技术无法满足的信号分解挑战。我们将把目前的准确度从 8 个同时活动的运动单元的通常 85% 提高到最多 15 个同时活动的运动单元的 96% 以上。我们还将为可在实验室或诊所使用的独立便携式系统设计和构建硬件和软件。然后我们会将系统转移给制造商进行商业化。在此过程中,我们将首次生产出一种先进的系统,可以方便、准确地从肌电图信号中获取一大群同时活动的运动单元的放电情况。新技术将在两项应用研究中进行测试,这两项研究将与技术开发同时进行。人们将研究运动单位发射特性的神经变化作为衰老和身体活动的函数。另一个将研究阻力运动对与年龄相关的神经适应的缓解作用,最终开发出一种临床标记来估计老年人从运动计划中受益的可能性。拟议的 BRP 将由博士领导。 De Luca、Roy 和 Adam 是来自波士顿大学 (BU) 的关键人员,拥有生物医学工程和肌电图系统开发方面的专业知识。信号处理/软件开发将由 Nawab 博士通过 BU 电气与计算机工程系领导提供。波士顿大学医学院神经病学系的 Novak 博士和亚特兰大埃默里大学医学院康复医学系的 Wolf 博士将提供有关衰老/运动控制的临床专业知识
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings.
统计上严格的计算不支持运动单元放电的共同输入和长期同步。
- DOI:10.1152/jn.00725.2013
- 发表时间:2014
- 期刊:
- 影响因子:2.5
- 作者:DeLuca,CarloJ;Kline,JoshuaC
- 通讯作者:Kline,JoshuaC
High-yield decomposition of surface EMG signals.
- DOI:10.1016/j.clinph.2009.11.092
- 发表时间:2010-10
- 期刊:
- 影响因子:0
- 作者:Nawab SH;Chang SS;De Luca CJ
- 通讯作者:De Luca CJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo J De Luca其他文献
SURFACE ELECTROMYOGRAPHY : DETECTION AND RECORDING
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.5
- 作者:
Carlo J De Luca - 通讯作者:
Carlo J De Luca
Classification of back muscle impairment based on the surface electromyographic signal.
基于表面肌电信号的背部肌肉损伤分类。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Serge H. Roy;Carlo J De Luca;M. Emley;Lars I. E. Oddsson;J. C. Buijs;Jo;David S Newcombe;Joseph F Jabre - 通讯作者:
Joseph F Jabre
Carlo J De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo J De Luca', 18)}}的其他基金
Harnessing Motoneuron Activity: From Lab to Clinic
利用运动神经元活动:从实验室到诊所
- 批准号:
7236418 - 财政年份:2007
- 资助金额:
$ 55.53万 - 项目类别:
Harnessing Motoneuron Activity: From Lab to Clinic
利用运动神经元活动:从实验室到诊所
- 批准号:
7433213 - 财政年份:2007
- 资助金额:
$ 55.53万 - 项目类别:
Harnessing Motoneuron Activity: From Lab to Clinic
利用运动神经元活动:从实验室到诊所
- 批准号:
7860691 - 财政年份:2007
- 资助金额:
$ 55.53万 - 项目类别:
Harnessing Motoneuron Activity: From Lab to Clinic
利用运动神经元活动:从实验室到诊所
- 批准号:
7637376 - 财政年份:2007
- 资助金额:
$ 55.53万 - 项目类别:
Non-Invasive System for Identifying Neural Behavior
用于识别神经行为的非侵入性系统
- 批准号:
7132833 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
Wearable-Sensor System for Monitoring Motor Function
用于监测运动功能的可穿戴传感器系统
- 批准号:
7285272 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
Wearable-Sensor System for Monitoring Motor Function
用于监测运动功能的可穿戴传感器系统
- 批准号:
7682267 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
Non-Invasive System for Identifying Neural Behavior
用于识别神经行为的非侵入性系统
- 批准号:
7675312 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
Non-Invasive System for Identifying Neural Behavior
用于识别神经行为的非侵入性系统
- 批准号:
7489322 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
Wearable-Sensor System for Monitoring Motor Function
用于监测运动功能的可穿戴传感器系统
- 批准号:
7880363 - 财政年份:2006
- 资助金额:
$ 55.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别:
A new approach to understanding cognitive disabilities in Down syndrome
理解唐氏综合症认知障碍的新方法
- 批准号:
10725562 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别: