Regulation of PMCA Pump-Channels by Oxidant Stress
氧化应激对 PMCA 泵通道的调节
基本信息
- 批准号:7923951
- 负责人:
- 金额:$ 40.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAffinityAlzheimer&aposs DiseaseArchitectureArteriesAtherosclerosisBindingBiological AgingBlood VesselsCa(2+)-Transporting ATPaseCalciumCardiac GlycosidesCationsCell DeathCell LineCell membraneCell physiologyCellsCysteineCytolysisDevelopmentDiseaseEmployee StrikesEvaluationEventEvolutionFamilyGlutathioneGlutathione DisulfideGoalsHand functionsHomeostasisIn VitroInsectaIon ChannelIon PumpsIonsKineticsLeadLinkLiposomesLow-Density LipoproteinsMarine ToxinsMediatingMembraneModelingModificationMolecularMolecular ConformationMolecular TargetMonovalent CationsMyocardial InfarctionNa(+)-K(+)-Exchanging ATPaseNatureNecrosisOuabainOxidantsOxidation-ReductionOxidative StressPathway interactionsPermeabilityPeroxidasesPhysiologicalPlayPreparationPropertyProteinsPumpRNA InterferenceRegulationReperfusion InjuryResearch Project GrantsRoleSignal TransductionStimulusStrokeTestingTherapeutic InterventionToxinVascular Endothelial Cellcell killingdensityin vivoinsightinterestknockout genemaitotoxinmanmarine organismmemberneuronal cell bodynoveloperationoxidant stressoxidationpalytoxinreceptorreconstitutionresearch studyresponsetert-Butylhydroperoxideuptake
项目摘要
Ion channels use the energy stored in ionic gradients to initiate rapid signaling events essential for the
function of virtually every cell in the body. Although channel activation can occur in response to a variety of
different stimuli, once open all channels share a common feature--they allow millions of ions per second to
cross the membrane. Pump proteins on the other hand, use the energy in ATP to establish the ionic gradients
necessary for channel function. Pumps generally move hundreds of ions per second, and hence their density
in the membrane is by necessity much higher than that of channels. These striking differences led to the view
that pumps and channels move ions across membranes by very different mechanisms. However, recent
studies on the potent marine toxin, palytoxin (PTX), challenge this concept. PTX binds with picomolar affinity
to the Na+,K+-ATPase (NKA) and converts the pump into a non-selective cation channel. Evaluation of PTX
action suggests that the fundamental difference between channels and pumps resides not so much in the
molecular architecture of the ion translocation pathway itself, by rather in the intrinsic gating properties of the
protein. More importantly, the fact that high affinity toxins can induce a channel-mode of pump operation
suggests that endogenous mechanisms may also exist that lead to the same channel mode and which may have
either an important physiological role in cell signaling, or produce disastrous consequences for cell function
and survival if not adequately controlled. Our preliminary studies have shown that another marine toxin
called maitotoxin (MTX), converts the plasmalemmal Ca2+-ATPase pump (PMCA) into a Ca2+-permeable, nonselective
cation channel which ultimately causes Ca2+-overload induced necrotic cell death. Furthermore, we
discovered that the Ca2+ channels activated by MTX in vascular endothelial cells are biophysically identical to
the channels activated by the model oxidant, tert-butyl-hydroperoxide or by oxidized glutathione (GSSG).
Thus, changes in cellular redox status, appears to trigger conversion of the PMCA pump into a channel.
Furthermore, our recent studies showed that the PMCA can be directly glutathionylated both in vitro and in
vivo, in response to oxidant stress. Therefore, in Specific Aim #1, we will test the hypothesis that oxidative
stress converts the PMCA pump into a non-selective cation channel, and in Specific Aim #2, we will determine
the role of glutathionylation in both inhibition of PMCA catalytic activity and in the pump-to-channel
conversion. The conversion of the PMCA pump into a channel provides a novel and ubiquitous mechanism
by which oxidative stress initiates Ca2+-overload and provides a new molecular target for therapeutic
intervention in a variety of pathological conditions including atherosclerosis, ischemia-reperfusion injury,
Alzheimer’s disease, and biological aging.
离子通道利用存储在离子梯度中的能量来启动快速信号传导事件对
几乎体内每个细胞的功能。尽管可以响应各种频道激活
不同的刺激,一旦打开所有通道都有一个共同的特征 - 它们允许每秒数百万个离子到
越过膜。另一方面,泵送蛋白质,使用ATP中的能量来建立离子梯度
通道功能所需的。泵通常每秒移动数百个离子,因此它们的密度
在膜中,必要的要比通道高得多。这些引人注目的差异导致了视野
泵和通道通过非常不同的机制将离子跨机理移动。但是,最近
对潜在的海洋毒素Palytoxin(PTX)的研究挑战了这一概念。 PTX与皮摩尔亲和力结合
到Na+,K+-ATPase(NKA),并将泵转换为非选择性阳离子通道。 PTX的评估
行动表明,渠道和泵居住宅之间的基本差异并不多
离子易位途径本身的分子结构,而不是在固有的门控特性
蛋白质。更重要的是,高亲和力毒素可以诱导泵操作的通道模式这一事实
表明内源性机制也可能存在导致相同渠道模式的,并且可能具有
要么在细胞信号传导中起重要的身体作用,要么对细胞功能产生灾难后果
如果没有充分控制,生存也是如此。我们的初步研究表明另一种海洋毒素
称为Maitotoxin(MTX),将浆膜Ca2+-ATPase Pump(PMCA)转换为Ca2+可渗透性,非选择性
阳离子通道最终导致Ca2+超负荷引起的坏死细胞死亡。此外,我们
发现血管内皮细胞中MTX激活的Ca2+通道在生物物理上与
由模型氧化剂,TERT叔丁基 - 氧化物或氧化谷胱甘肽(GSSG)激活的通道。
那是细胞氧化还原状态的变化,似乎触发了PMCA泵转换为通道。
此外,我们最近的研究表明,PMCA可以直接在体外和IN中直接化谷胱甘肽
体内,响应氧化应激。因此,在特定的目标#1中,我们将测试氧化的假设
压力将PMCA泵转换为非选择性阳离子通道,在特定的目标#2中,我们将确定
谷胱甘肽化在抑制PMCA催化活性和泵到通道中的作用
转换。 PMCA泵向通道的转化提供了一种新颖而普遍的机制
氧化应力引发Ca2+ - 超负荷,并提供了一个新的分子靶标
干预各种病理状况,包括动脉粥样硬化,缺血 - 灌注损伤,
阿尔茨海默氏病和生物衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM P SCHILLING其他文献
WILLIAM P SCHILLING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILLIAM P SCHILLING', 18)}}的其他基金
Regulation of PMCA Pump-Channels by Oxidant Stress
氧化应激对 PMCA 泵通道的调节
- 批准号:
7699728 - 财政年份:2009
- 资助金额:
$ 40.42万 - 项目类别:
Heart-Lung Physiology: Molecular-Systemic Integration
心肺生理学:分子系统整合
- 批准号:
7247205 - 财政年份:1999
- 资助金额:
$ 40.42万 - 项目类别:
Heart-Lung Physiology: Molecular-Systemic Integration
心肺生理学:分子系统整合
- 批准号:
7484121 - 财政年份:1999
- 资助金额:
$ 40.42万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 40.42万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10371815 - 财政年份:2022
- 资助金额:
$ 40.42万 - 项目类别:
A lipid-based approach towards a high-resolution structure of a functional nAChR
基于脂质的方法获得功能性 nAChR 的高分辨率结构
- 批准号:
9068277 - 财政年份:2013
- 资助金额:
$ 40.42万 - 项目类别:
A lipid-based approach towards a high-resolution structure of a functional nAChR
基于脂质的方法获得功能性 nAChR 的高分辨率结构
- 批准号:
8158503 - 财政年份:2013
- 资助金额:
$ 40.42万 - 项目类别:
A lipid-based approach towards a high-resolution structure of a functional nAChR
基于脂质的方法获得功能性 nAChR 的高分辨率结构
- 批准号:
8739659 - 财政年份:2013
- 资助金额:
$ 40.42万 - 项目类别: