Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
基本信息
- 批准号:10812556
- 负责人:
- 金额:$ 3.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-10-15
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAdenine Nucleotide TranslocaseAgeApoptosisAttenuatedBiologyCardiacCardiac MyocytesCell DeathCessation of lifeCollaborationsComplexCytoplasmDataDepressed moodDiseaseElectron TransportEngineeringEventExhibitsFunctional disorderGene DeletionGeneticHeartHeart failureHumanIndividualInfarctionInvestigationKnockout MiceLeftMammalian CellMediatingMetabolicMitochondriaMitochondrial Proton-Translocating ATPasesModelingMusMyocardial IschemiaMyocardial dysfunctionNecrosisPathway interactionsPatientsPharmaceutical PreparationsProtein Complex SubunitRadioisotopesRegulationReperfusion TherapyRoleSpecimenSurgeonTestingUncertaintyVentricularWild Type Mousedefined contributionexperimental studygain of functionheart functionin vivoinhibitorloss of functionmitochondrial permeability transition poremortalitymouse modelnovelpressureresponse
项目摘要
The mitochondrial ATP synthase is a multi-subunit complex that catalyzes the synthesis of >90% of ATP in
mammalian cells. The ATP synthase is also hypothesized to function as the mitochondrial permeability transition
pore (mPTP), a major trigger for necrotic cell death. Except for short-term drug inhibitor experiments, the
functions of the ATP synthase have never been assessed in the heart in vivo. We have created the first mouse
models deficient in the entire ATP synthase complex in cardiomyocytes. To accomplish this, we individually
deleted at 5 weeks of age ATP5L and ATP5J, ATP synthase subunits required for complex assembly. Thus far,
we have analyzed the ATP5L KO mice. Because the half-lives of most mitochondrial ATP synthase subunits
exceed 35 days in cardiomyocytes, the abundance of the complex decreased gradually with 15% remaining at
12 weeks post-deletion. KO mice uniformly developed heart failure (HF) with reduced systolic function and died
between 12-16 weeks post-deletion. Analysis of cardiac mitochondria confirmed reduced ATP synthesis rates
as expected. Unexpectedly, however, ATP concentrations in whole heart lysates, as well as in cytoplasmic and
mitochondrial fractions, were elevated in KO, compared with control, mice. Parallel investigations into the role of
the ATP synthase as the mPTP revealed that, rather than inhibiting Ca2+-induced mPTP opening, deficiency of
the ATP synthase sensitized this event. Moreover, mice with cardiomyocyte-specific deficiency of the ATP
synthase exhibited larger – not smaller – infarcts following myocardial ischemia/reperfusion in vivo. Finally, we
observed that ATP synthase levels and activity in mitochondria decrease during pressure overload-induced HF
in wild type mice. These results suggest: (a) Loss of the mitochondrial ATP synthase activates marked
metabolic/energetic responses and unleashes previously unrecognized mechanisms that promote lethal HF.
Regarding the latter, our preliminary studies implicate Complex II to I reverse electron transport (RET) promoting
ROS-induced cardiomyocyte apoptosis. (b) Our studies cast doubt that the ATP synthase also functions as the
mPTP and rather suggest that it is a negative regulator. (c) Deficient ATP synthase function may contribute to
acquired forms of HF. We propose studies to understand the mechanistic basis of our observations and to assess
the role deficient mitochondrial ATP synthase function in human HF. Aim 1. To define metabolic/energetic
pathways that are activated and mechanisms that contribute to HF in mice with cardiomyocyte-specific deficiency
of the mitochondrial ATP synthase. Aim 2. To test definitively whether the mitochondrial ATP synthase is the
mPTP. Aim 3. To assess the role of deficient mitochondrial ATP synthase abundance/function in pressure
overload-induced HF in mice and in human HF. These studies break new ground in investigating functions of
the mitochondrial ATP synthase in cardiomyocytes in vivo. Deliverables include the assessment of RET as a
novel HF mechanism, a definitive determination of the role of the ATP synthase as the mPTP, and a delineation
of the role deficient ATP synthase function in human HF.
线粒体 ATP 合酶是一种多亚基复合物,可催化体内 90% 以上 ATP 的合成
哺乳动物细胞中的 ATP 合酶也被开发为具有线粒体通透性转换的功能。
孔(mPTP),坏死细胞死亡的主要触发因素除了短期药物抑制剂实验外。
ATP合酶的功能从未在体内进行过评估 我们已经创造了第一只小鼠。
为了实现这一目标,我们单独构建了心肌细胞中整个 ATP 合酶复合物缺陷的模型。
5 周龄时缺失 ATP5L 和 ATP5J,这是复杂组装所需的 ATP 合酶亚基。
我们分析了 ATP5L KO 小鼠,因为大多数线粒体 ATP 合酶亚基的半衰期。
在心肌细胞中超过35天,复合物的丰度逐渐下降,仅剩15%
删除后 12 周,KO 小鼠均出现心力衰竭 (HF),收缩功能降低并死亡。
删除后 12-16 周,心脏线粒体分析证实 ATP 合成率降低。
然而,出乎意料的是,整个心脏裂解物以及细胞质和细胞中的 ATP 浓度。
与对照小鼠相比,KO 小鼠的线粒体分数升高。
ATP合酶作为mPTP表明,缺乏Ca2+诱导的mPTP开放,而不是抑制Ca2+诱导的mPTP开放。
此外,心肌细胞特异性缺乏 ATP 的小鼠也对这一事件敏感。
体内心肌缺血/再灌注后,合酶出现更大而不是更小的梗塞。
观察到压力过载引起的心力衰竭期间线粒体中的 ATP 合酶水平和活性降低
在野生型小鼠中,这些结果表明:(a) 线粒体 ATP 合酶的丧失会显着激活。
代谢/能量反应并释放以前未被识别的促进致命心力衰竭的机制。
关于后者,我们的初步研究表明复合物 II 到 I 的反向电子传递 (RET) 促进
ROS 诱导的心肌细胞凋亡 (b) 我们的研究对 ATP 合酶也发挥着细胞凋亡的作用提出了怀疑。
mPTP 更确切地说表明它是一种负调节因子 (c) ATP 合酶功能缺陷可能导致。
我们提出研究来了解我们观察到的机制基础并进行评估。
线粒体 ATP 合酶功能缺陷在人类心衰中的作用 目标 1. 定义代谢/能量。
心肌细胞特异性缺陷小鼠中被激活的途径和导致心力衰竭的机制
目标 2. 确定线粒体 ATP 合酶是否是线粒体 ATP 合酶。
mPTP。目标 3. 评估线粒体 ATP 合酶丰度/功能缺陷在压力中的作用
这些研究在小鼠和人类心力衰竭的功能研究方面开辟了新的领域。
体内心肌细胞线粒体 ATP 合酶的可交付成果包括对 RET 进行评估。
新颖的 HF 机制,明确确定 ATP 合酶作为 mPTP 的作用,并描述
ATP合酶功能缺陷在人类心力衰竭中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard N Kitsis其他文献
Richard N Kitsis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard N Kitsis', 18)}}的其他基金
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10632143 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Caspase-9 as a nodal point connecting necrotic and apoptotic cell death in myocardial infarction
Caspase-9作为连接心肌梗死细胞坏死和凋亡的节点
- 批准号:
10666668 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Caspase-9 as a nodal point connecting necrotic and apoptotic cell death in myocardial infarction
Caspase-9 作为连接心肌梗死细胞坏死和凋亡的节点
- 批准号:
10504387 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10758687 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10446745 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10280485 - 财政年份:2021
- 资助金额:
$ 3.57万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10458699 - 财政年份:2021
- 资助金额:
$ 3.57万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10655447 - 财政年份:2021
- 资助金额:
$ 3.57万 - 项目类别:
相似国自然基金
腺嘌呤核苷酸转位酶2的下调抑制线粒体ATP合成介导纳米塑料致大脑神经元铁死亡的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10632143 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10446745 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Mechanism of age-dependent neuromuscular degeneration caused by protein misfolding on the inner mitochondrial membrane
线粒体内膜蛋白质错误折叠引起的年龄依赖性神经肌肉变性的机制
- 批准号:
10217989 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Mechanism of age-dependent neuromuscular degeneration caused by protein misfolding on the inner mitochondrial membrane
线粒体内膜蛋白质错误折叠引起的年龄依赖性神经肌肉变性的机制
- 批准号:
9980255 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Mitochondrial Dysfunction in Obstructed Bladder: Role of Desmin and Vimentin
膀胱梗阻的线粒体功能障碍:结蛋白和波形蛋白的作用
- 批准号:
9295007 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别: