Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
基本信息
- 批准号:10793016
- 负责人:
- 金额:$ 13.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAllosteric RegulationAllosteric SiteBiochemicalBiological AssayBiologyComplexComputer ModelsCysteineData SetDiabetes MellitusDiseaseGene FamilyGenomeGenotypeGoalsInflammatoryLinkMachine LearningMalignant NeoplasmsMapsMass Spectrum AnalysisMiningModelingMutationOncogenicOxidation-ReductionOxidative StressPatientsPhosphotransferasesProtein KinaseProteinsReceptor Protein-Tyrosine KinasesRegulationResourcesSignal TransductionSiteStructureSystemTechnologyWorkage relatedbiological adaptation to stressdata integrationdisease phenotypedrug discoveryglycosyltransferasehuman diseasein vivoknowledge graphmembermolecular dynamicspersonalized medicinephenomepredictive modelingprotein functionsmall moleculesulfotransferasetool
项目摘要
PROJECT SUMMARY (unchanged)
Predicting disease phenotypes from genotypes is a grand challenge in biology and
personalized medicine. Our long-term goal is to address this challenge using a
combination of computational and experimental approaches. Working towards this goal,
we have developed and deployed a powerful evolutionary systems approach to map the
complex relationships connecting sequence, structure, function, regulation and disease
in biomedically important protein super-families such as protein kinases. We have made
important contributions describing the unique modes of allosteric regulation in various
protein kinases, deciphering the structural basis of oncogenic activation in a subset of
receptor tyrosine kinases, uncovering the regulation of pseudokinases, and developing
new tools and resources for addressing data integration challenges in the signaling field.
We propose to build on these impactful studies to answer key questions emanating from
our ongoing studies such as: What are the functions of pseudokinases, the catalytically-
inert members of the kinome, and how can we use pseudokinases to better predict and
characterize non-catalytic functions of kinases? What are the functions of conserved
cysteine residues in regulatory sites of protein and small molecule kinases and are they
post-translationally modified in redox signaling and oxidative stress response that are
causally associated with age-related disorders? How can we enhance existing
computational models for predicting genome-phenome relationships using structural
information, and can machine learning on structurally enhanced knowledge graphs reveal
new relationships between patient-derived mutations and disease phenotypes? We
propose to answer these questions using a variety of approaches including statistical
mining of large sequence datasets, molecular dynamics simulations, machine learning,
mass spectrometry, biochemical analysis and in vivo assays. Completion of this work is
expected to reveal new allosteric sites for targeting pseudokinase and kinase non-
catalytic functions in diseases, and significantly advance our understanding of kinase
regulatory mechanisms in disease and normal states. Our work will create new tools and
resources for knowledge graph mining and provide explainable models for inferring
causal relationships linking genomes and phenomes with potential applications in
personalized medicine. Finally, the scope and impact of our work will be significantly
broadened by participation in studies extending our specialized tools and technological
approaches developed for the study of kinases to other biomedically important gene
families such as glycosyltransferases and sulfotransferases.
项目摘要(不变)
从基因型预测疾病表型是生物学和
个性化医学。我们的长期目标是使用
计算方法和实验方法的组合。努力实现这一目标,
我们已经开发并部署了强大的进化系统方法来映射
连接序列,结构,功能,调节和疾病的复杂关系
在生物医学上重要的蛋白质超家族中,例如蛋白激酶。我们做了
重要的贡献,描述了各种变构调节的独特模式
蛋白激酶,在一部分中解密了致癌激活的结构基础
受体酪氨酸激酶,发现假酶的调节,并发展
用于解决信号字段中数据集成挑战的新工具和资源。
我们建议以这些有影响力的研究为基础,以回答从
我们正在进行的研究,例如:伪动酶的功能是什么,催化性 -
惰性成员的成员,我们如何使用伪动酶来更好地预测和
表征激酶的非催化功能?保守的功能是什么
蛋白质和小分子激酶的调节位点的半胱氨酸残基,它们是
在氧化还原信号传导和氧化应激反应中进行的翻译后修饰
与年龄有关的疾病有因果关系吗?我们如何增强现有
用于使用结构的预测基因组 - 表现关系的计算模型
信息,并且可以在结构增强的知识图上进行机器学习揭示
患者衍生的突变与疾病表型之间的新关系?我们
建议使用包括统计的各种方法来回答这些问题
挖掘大序列数据集,分子动力学模拟,机器学习,
质谱,生化分析和体内测定。这项工作的完成是
预计将揭示新的变构位点,用于靶向假子酶和激酶非 -
疾病中的催化功能,并显着提高我们对激酶的理解
疾病和正常状态的调节机制。我们的工作将创建新工具,
知识图挖掘的资源,并提供可解释的模型
将基因组和现象与潜在应用联系起来的因果关系
个性化医学。最后,我们工作的范围和影响将显着
通过参与研究扩展我们的专业工具和技术
开发了用于研究其他生物医学重要基因的方法
诸如糖基转移酶和磺胺转移酶之类的家族。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function.
- DOI:10.1038/s41467-023-41890-7
- 发表时间:2023-10-17
- 期刊:
- 影响因子:16.6
- 作者:Cuesta-Hernandez, Hipolito Nicolas;Contreras, Julia;Soriano-Maldonado, Pablo;Sanchez-Wandelmer, Jana;Yeung, Wayland;Martin-Hurtado, Ana;Munoz, Ines G.;Kannan, Natarajan;Llimargas, Marta;Munoz, Javier;Plaza-Menacho, Ivan
- 通讯作者:Plaza-Menacho, Ivan
Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings.
- DOI:10.1093/bib/bbac599
- 发表时间:2023-01-19
- 期刊:
- 影响因子:9.5
- 作者:
- 通讯作者:
Protein kinase inhibitor selectivity "hinges" on evolution.
蛋白激酶抑制剂的选择性“取决于”进化。
- DOI:10.1016/j.str.2022.11.004
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shrestha,Safal;Bendzunas,George;Kannan,Natarajan
- 通讯作者:Kannan,Natarajan
Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization.
- DOI:10.1038/s41467-023-42255-w
- 发表时间:2023-10-26
- 期刊:
- 影响因子:16.6
- 作者:Meng, Yanxiang;Garnish, Sarah E.;Davies, Katherine A.;Black, Katrina A.;Leis, Andrew P.;Horne, Christopher R.;Hildebrand, Joanne M.;Hoblos, Hanadi;Fitzgibbon, Cheree;Young, Samuel N.;Dite, Toby;Dagley, Laura F.;Venkat, Aarya;Kannan, Natarajan;Koide, Akiko;Koide, Shohei;Glukhova, Alisa;Czabotar, Peter E.;Murphy, James M.
- 通讯作者:Murphy, James M.
Redox Regulation of Brain Selective Kinases BRSK1/2: Implications for Dynamic Control of the Eukaryotic AMPK family through Cys-based mechanisms
- DOI:10.1101/2023.10.05.561145
- 发表时间:2023-10-06
- 期刊:
- 影响因子:0
- 作者:Bendzunas,George N.;Byrne,Dominic P;Kannan,Natarajan
- 通讯作者:Kannan,Natarajan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natarajan Kannan其他文献
Natarajan Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natarajan Kannan', 18)}}的其他基金
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10457684 - 财政年份:2022
- 资助金额:
$ 13.77万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10661550 - 财政年份:2022
- 资助金额:
$ 13.77万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
- 批准号:
10809950 - 财政年份:2022
- 资助金额:
$ 13.77万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
- 批准号:
10809931 - 财政年份:2022
- 资助金额:
$ 13.77万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10552630 - 财政年份:2021
- 资助金额:
$ 13.77万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10019396 - 财政年份:2019
- 资助金额:
$ 13.77万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10461733 - 财政年份:2019
- 资助金额:
$ 13.77万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
9915864 - 财政年份:2019
- 资助金额:
$ 13.77万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10218213 - 财政年份:2019
- 资助金额:
$ 13.77万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
10348826 - 财政年份:2019
- 资助金额:
$ 13.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the metal-dependent function, allostery and inhibition of CRISPR-Cas9
研究 CRISPR-Cas9 的金属依赖性功能、变构和抑制
- 批准号:
10592389 - 财政年份:2021
- 资助金额:
$ 13.77万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10552630 - 财政年份:2021
- 资助金额:
$ 13.77万 - 项目类别:
Molecular Mechanism of Mitochondrial Membrane Transport
线粒体膜运输的分子机制
- 批准号:
10610401 - 财政年份:2020
- 资助金额:
$ 13.77万 - 项目类别:
The Molecular Basis of Cellular Control Mechanisms
细胞控制机制的分子基础
- 批准号:
7369649 - 财政年份:1996
- 资助金额:
$ 13.77万 - 项目类别:
The Molecular Basis of Cellular Control Mechanisms
细胞控制机制的分子基础
- 批准号:
7555641 - 财政年份:1996
- 资助金额:
$ 13.77万 - 项目类别: