Mechanistic insights into lysosomal nutrient efflux in cancer
癌症中溶酶体营养物流出的机制见解
基本信息
- 批准号:10795668
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAreaArginineAutophagocytosisBindingBiochemicalBiological AssayBiologyCell physiologyChemicalsCoupledCryoelectron MicroscopyCytosolCytotoxic ChemotherapyDNADevelopmentEatingEnvironmentEssential Amino AcidsExtracellular ProteinFaceFoodFutureGatekeepingGoalsGrowthHomologous GeneHumanImpairmentIn VitroIntegral Membrane ProteinLaboratoriesLaboratory FindingLeadLearningLeucineLibrariesLipidsLysosomesMalignant NeoplasmsMalignant neoplasm of pancreasMammalian CellMediatingMedicineMembrane ProteinsMembrane Transport ProteinsMentorsMetabolicMolecularMolecular ConformationMolecular MachinesMotivationMutationNormal CellNutrientOncogenicOutcomePathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPhasePhosphotransferasesPositioning AttributeProcessProliferatingProteinsProtocols documentationRecording of previous eventsRecyclingResearchResearch PersonnelRoleScientistSignal TransductionStarvationStructureTestingTrainingTransport ProcessValidationVisualizationWorkX-Ray Crystallographyanalogaspiratecancer cellcancer typecareerchemotherapydiagnostic tooldrug developmentdrug discoveryeffective therapyexpectationexperimental studyextracellularfightingimprovedinnovationinsightlysosomal proteinsmTOR proteinmetabolomicsmutantnanobodiesnanodisknovelnovel therapeuticspancreatic cancer cellspreventprogramsproteoliposomesrational designreconstitutionscreeningsmall moleculesmall molecule inhibitorsmall molecule librariesstructural biologysuccesstherapeutic targettumortumor metabolismtumor microenvironment
项目摘要
ABSTRACT
Many RAS-transformed aggressive cancer cells are able to escape cytotoxic chemotherapy and survive in
near-starvation conditions. One adaptation making them hard to kill is their ability to scavenge extracellular
proteins and recycle the cellular components using autophagy, both of which are then digested in lysosomes to
recover free amino acids. The process of scavenging and internalization is known as macropinocytosis, and
cancer cells aquire mutations to upregulate it when faced with nutrient-poor conditions. To fight such cancers,
researchers are currently targeting the macropinocytosis machinery; however, because this process is not very
well studied, and likely involves hundreds of proteins with redundant functions, such therapy might prove
challenging to exectute without involving multiple drugs. We propose a better way of targeting
nutrient-scavenging cancers by focusing on a downstream process of releasing digested nutrients from
lysosomes to cytosol. The Sabatini Lab showed that the release of digested amino acids from lysosomes is
orchestrated by the mTORC1 pathway, and specifically by SLC38A9. This lysosomal membrane protein
senses the rising levels of digested amino acids in lysosomes by directly binding arginine. Our lab found that
this sensing is coupled to activation of the transporter function, and results in the efflux of essential non-polar
amino-acids, such as leucine, from lysosomes to cytosol. Importantly, RAS-transformed pancreatic cancer
cells that feed on extracellular protein were unable to efficiently form tumors in the absence of SLC38A9.
These results present a novel therapeutic idea of targeting a metabolic vulnerability in cancers transformed by
oncogenic RAS signaling. In this five-year project we will elucidate the molecular mechanism of releasing
digested amino acids from lysosomes to cytosol via SLC38A9, and therefore provide a rational approach to
drug discovery. In parallel to that, we will screen for small molecules that specifically bind to SLC38A9, and
develop them into chemical probes that modulate its transport activity. Impaired efflux function of SLC38A9 will
lead to entrapment of macropinocytosis-derived amino-acids within the lysosomes, and our expectation is that
this treatment will impair the growth of RAS-mutant and other tumors addicted to protein scavenging, while
sparing normal cells that lack this requirement. Over the first two years of the mentored phase, I will be based
at the Whitehead Institute, where I will learn cell signaling and metabolomics approaches from the experts in
the field. I will also venture into a completely new research area to me, chemical biology, working with experts
at the Broad Institute. After the completion of my K99 training, my aspiration is to lead a laboratory that
combines cell signaling, structural biology, and chemical biology to study membrane transporters and their role
in cancer metabolism. In parallel to understanding basic biology, I want my lab to develop specific
small-molecule modulators that adjust transport activities of those proteins, facilitating further research in the
field, and in long term – new medicines.
抽象的
许多 RAS 转化的侵袭性癌细胞能够逃避细胞毒性化疗并在
一种使它们难以被杀死的适应性是它们清除细胞外物质的能力。
蛋白质并利用自噬回收细胞成分,然后两者都在溶酶体中被消化
回收游离氨基酸的清除和内化过程称为巨胞饮作用,并且
当面临营养不良的情况时,癌细胞会发生突变以上调它来对抗此类癌症。
然而,研究人员目前正在针对巨胞饮机制,因为这个过程并不十分复杂。
经过充分研究,涉及数百种具有冗余功能的蛋白质,这种疗法可能证明
在不涉及多种药物的情况下实现这一目标具有挑战性,我们提出了一种更好的靶向方法。
通过关注释放消化的营养物质的下游过程来治疗营养清除癌症
Sabatini 实验室表明,消化的氨基酸从溶酶体中释放出来。
由 mTORC1 通路,特别是 SLC38A9 这种溶酶体膜蛋白精心策划。
我们的实验室发现,通过直接结合精氨酸来感知溶酶体中消化氨基酸水平的上升。
这种传感与转运蛋白功能的激活相结合,并导致必需的非极性物质的流出
氨基酸,如亮氨酸,从溶酶体到细胞质,RAS 转化的胰腺癌。
在缺乏 SLC38A9 的情况下,以细胞外蛋白为食的细胞无法有效形成肿瘤。
这些结果提出了一种针对癌症代谢脆弱性的新颖治疗思路
在这个为期五年的项目中,我们将阐明致癌的 RAS 信号传导的分子机制。
通过 SLC38A9 将氨基酸从溶酶体消化到胞浆中,因此提供了一种合理的方法
与此同时,我们将筛选与 SLC38A9 特异性结合的小分子,以及
将它们开发成调节 SLC38A9 的转运功能受损的化学探针。
导致巨胞饮作用衍生的氨基酸被困在溶酶体内,我们的期望是
这种治疗将损害 RAS 突变体和其他依赖蛋白质清除的肿瘤的生长,同时
在指导阶段的前两年,我将保留缺乏这种要求的正常细胞。
在怀特海德研究所,我将向以下领域的专家学习细胞信号传导和代谢组学方法
我还将与专家合作,涉足一个全新的研究领域,即化学生物学。
在布罗德研究所完成 K99 培训后,我的愿望是领导一个实验室
结合细胞信号传导、结构生物学和化学生物学来研究膜转运蛋白及其作用
在了解基础生物学的同时,我希望我的实验室能够开发出特定的药物。
小分子调节剂可以调节这些蛋白质的转运活性,促进进一步的研究
领域,从长远来看——新药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kacper Rogala其他文献
Kacper Rogala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kacper Rogala', 18)}}的其他基金
Mechanisms of amino-acid sensing by the GATOR complex
GATOR 复合物的氨基酸传感机制
- 批准号:
10716059 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Mechanistic insights into lysosomal nutrient efflux in cancer
癌症中溶酶体营养物流出的机制见解
- 批准号:
10682652 - 财政年份:2022
- 资助金额:
$ 17.09万 - 项目类别:
Mechanistic insights into lysosomal nutrient efflux in cancer
癌症中溶酶体营养物流出的机制见解
- 批准号:
10341120 - 财政年份:2021
- 资助金额:
$ 17.09万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
The role of adaptive immunity in organophosphate induced CNS injury
适应性免疫在有机磷诱导的中枢神经系统损伤中的作用
- 批准号:
10629511 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别: