Discovery of Immunogenomic Associations with Disease and Differential Risk Across Diverse Populations
发现免疫基因组与不同人群的疾病和差异风险的关联
基本信息
- 批准号:10796657
- 负责人:
- 金额:$ 22.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAfricanAfrican AmericanAll of Us Research ProgramAllelesAmericanAntigen PresentationAntigenic VariationAttentionBindingBioinformaticsBiologicalBiologyCardiovascular DiseasesCatalogsCharacteristicsClassificationCoupledDNADataData SetDevelopmentDiagnosisDigit structureDiseaseDisease stratificationDisease susceptibilityDisparateDisparityElectronic Health RecordEthnic PopulationEuropeanEuropean ancestryFutureGenderGenesGeneticGenetic VariationGenomeGenomicsHLA AntigensHispanicHumanImmuneImmune responseImmunogenomicsIndividualInfectionInvestigationKnowledgeLatinoLiteratureMachine LearningMajor Histocompatibility ComplexMalignant NeoplasmsMediatingMethodsMissionModelingNeural Network SimulationOrgan DonorParticipantPathogenesisPatientsPeptidesPhenotypePlayPopulationPopulation HeterogeneityPrevalencePublic HealthResearchResearch PersonnelRiskRisk FactorsRoleSystemTechniquesTestingUnderrepresented PopulationsUnited States National Institutes of HealthVariantWorkadverse drug reactionbiobankbiomarker identificationbody systemcombatcombinatorialdata acquisitiondisorder riskdiverse dataethnic disparitygenome sequencinggenome wide association studygenomic locushealth inequalitieshuman diseaseimmunoregulationimprovedinnovationinterestlearning strategymachine learning methodnervous system disordernovelnovel strategiesphenomepleiotropismprogramsprotein complexracial disparityracial populationsexsocial health determinantstoolwhole genome
项目摘要
ABSTRACT
Genetic variation in immune-related genes, as in the human leukocyte antigen (HLA) locus, plays a pervasive
role across organ systems. HLA variation, called HLA alleles, is used to match organ donors, and has been
associated with adverse drug reactions (ADRs), cancer, infections, and cardiovascular and neurologic diseases.
However, most studies focus on the impact of HLA variation on specific immune-mediated diseases; the broader
influence of HLA variation across all human disease has not been investigated in depth. The proposed research
program will address the challenge of identifying immunogenomic influence on a broad spectrum of diseases
and ADRs. Previous studies of HLA influence have almost exclusively focused on populations of European
descent, thus differences across ancestral groups are not well understood. The availability of the All of Us
Research Program (AoU), a large, diverse DNA biobank coupled to electronic health records (EHR) enables
investigation of how HLA alleles influence many diseases across multiple diverse populations simultaneously.
We propose to perform systematic investigation of the association of HLA alleles with disease, using a two
pronged approach based on the phenome-wide association study (PheWAS). PheWAS is a disease-neutral
approach that identifies the association between genetic variation across a broad set of diseases. In Specific
Aim 1, HLA alleles will be determined using whole genome sequence data, and PheWAS will be deployed in
AllofUs to determine the influences of HLA alleles across organ systems, and to explore ancestral differences in
HLA associations. We will determine association of HLA-A, -B, -C, -DR, and -DQ alleles with a comprehensive
set of diseases within and across major ancestry groups in AoU. Despite its power, PheWAS analysis is limited
to identifying single-allele connections to phenotypes of interest, so influences that result from HLA interactions
(either combinations of HLA alleles, or between an HLA gene and some other genomic context) may be missed.
Specific Aim 2 will address this shortcoming – we will develop Machine Learning strategies to explore the effect
of HLA allele interactions on disease, and explore the potential for recognizing pleiotropic influences of HLA
alleles. This innovative PheWAS-based approach has the potential to discover novel mechanisms of many
diseases, identify biomarkers that may predict disease, and create a roadmap by which future researchers
investigate the impact of HLA variation in human disease. As indicated by our previous work, PheWAS has the
potential to condense decades of immunogenomic discoveries into a single analysis. When applied to under-
studied, diverse populations, this work has the potential to accelerate this field of research. This approach can
be applied to many other genomic loci, differential associations by other characteristics such as sex and/or
gender, and identification of pleiotropic effects across disease systems, creating a number of potentially fruitful
avenues of future research.
抽象的
免疫相关基因的遗传变异,如人类白细胞抗原 (HLA) 基因座,起着普遍的作用。
HLA 变异(称为 HLA 等位基因)用于匹配器官捐献者,并且已被用于跨器官系统的作用。
与药物不良反应 (ADR)、癌症、感染以及心血管和神经系统疾病相关。
然而,大多数研究关注的是 HLA 变异对特定免疫介导疾病的影响。
HLA 变异对所有人类疾病的影响尚未得到深入研究。
该计划将解决识别免疫基因组对广泛疾病的影响的挑战
之前关于 HLA 影响的研究几乎全部集中在欧洲人群。
血统,因此我们所有人的可用性还没有得到很好的理解。
研究计划 (AoU) 是一个大型、多样化的 DNA 生物库,与电子健康记录 (EHR) 相结合,使
研究 HLA 等位基因如何同时影响多个不同人群的许多疾病。
我们建议使用两种方法对 HLA 等位基因与疾病的关联进行系统研究
基于全表组关联研究(PheWAS)的多管齐下的方法是一种疾病中性的方法。
确定多种疾病遗传变异之间关联的方法。
目标 1,将使用全基因组序列数据确定 HLA 等位基因,并将 PheWAS 部署在
AllofUs 确定 HLA 等位基因对器官系统的影响,并探索祖先的差异
我们将通过全面的分析来确定 HLA-A、-B、-C、-DR 和 -DQ 等位基因的关联。
尽管 PheWAS 分析功能强大,但其分析能力有限。
识别与感兴趣的表型的单等位基因连接,以及 HLA 相互作用产生的影响
(HLA 等位基因的组合,或 HLA 基因与其他基因组背景之间的组合)可能会被遗漏。
具体目标 2 将解决这个缺点——我们将制定机器学习策略来探索其效果
HLA 等位基因相互作用对疾病的影响,并探索识别 HLA 多效性影响的潜力
这种基于 PheWAS 的创新方法有可能发现许多新的机制。
疾病,识别可以预测疾病的生物标志物,并创建一个路线图,未来的研究人员可以通过该路线图
研究 HLA 变异对人类疾病的影响 正如我们之前的工作所示,PheWAS 具有以下特点:
当应用于不足时,有可能将数十年的免疫基因组发现浓缩为单一分析。
研究的不同人群,这项工作有可能加速这一领域的研究。
可应用于许多其他基因组位点,通过其他特征(例如性别和/或)进行差异关联
性别,以及跨疾病系统多效性的识别,创造了许多潜在的富有成效的成果
未来的研究途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hansen Karnes其他文献
Jason Hansen Karnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hansen Karnes', 18)}}的其他基金
Precision Medicine for All of Us Researchers Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
为我们所有研究人员提供的精准医学 Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
- 批准号:
10891233 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 22.36万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10653005 - 财政年份:2022
- 资助金额:
$ 22.36万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10439313 - 财政年份:2022
- 资助金额:
$ 22.36万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10454235 - 财政年份:2021
- 资助金额:
$ 22.36万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10270784 - 财政年份:2021
- 资助金额:
$ 22.36万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 22.36万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
10379303 - 财政年份:2019
- 资助金额:
$ 22.36万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
9899307 - 财政年份:2019
- 资助金额:
$ 22.36万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别:
A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
- 批准号:
10761609 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别:
Internet-Based Lifestyle Intervention to Eradicate Obese Frailty in Prostate Cancer Survivors (iLIVE)
基于互联网的生活方式干预,消除前列腺癌幸存者的肥胖虚弱 (iLIVE)
- 批准号:
10678740 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别:
1/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
1/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10633772 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别:
University of Minnesota Clinical and Translational Science Institute (UMN CTSI)
明尼苏达大学临床与转化科学研究所 (UMN CTSI)
- 批准号:
10763967 - 财政年份:2023
- 资助金额:
$ 22.36万 - 项目类别: