Fine-tuning CXCL12-mediated activities using Beta1-strand binding peptides
使用 Beta1 链结合肽微调 CXCL12 介导的活性
基本信息
- 批准号:10796003
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-09-14
- 项目状态:未结题
- 来源:
- 关键词:AffectAtherosclerosisAutoimmune DiseasesBindingBiochemicalBiologicalBiological SciencesBiomedical ResearchBiophysicsBlood PlateletsBreast Cancer CellCXCL9 geneCXCRCXCR4 ReceptorsCXCR4 geneCell CommunicationCell physiologyCellsCharacteristicsCo-ImmunoprecipitationsCommunicationComplexComputer softwareDataDiseaseDisease ProgressionEducational process of instructingEnvironmentEpithelial CellsEpitheliumGoalsHeterodimerizationHumanIL8 geneIn VitroIndividualInflammationInstitutionInvestigationKnowledgeLaboratory ResearchLengthLeukocytesMachine LearningMacrophageMalignant NeoplasmsMediatingModelingMusNorth CarolinaOpticsPPBP genePathologicPathologyPeptidesPhysicsPhysiologicalProcessProliferatingPublic HealthRANTESReceptor SignalingResearchResearch TechnicsRoleScienceSignal TransductionStromal Cell-Derived Factor 1StudentsSystemTestingTimeTrainingUniversitiesWorkbiophysical techniquescancer cellcareercell motilitycell typechemokinechemokine receptoreffective therapyexperienceexperimental studyglycosaminoglycan receptorimmunoregulationimprovedin silicoin vivointermolecular interactionmigrationmonocytemonomermutation screeningnew therapeutic targetnovelpeerpeptidomimeticspreventprogramsreceptorskillssuccesstherapeutic targettraining opportunityundergraduate student
项目摘要
ABSTRACT
The CXCR4/CXCR7-CXCL12 signaling critically modulate immune and cancer cell functions. Our work and
others have established the presence and the potential of chemokine heterodimers especially CXCL4-CXCL12
associated with an inhibition of CXCL12-CXCR4 signaling suggesting a new regulatory targetable mechanism.
The biological consequences of these newly discovered interactions including of CXCL4-CXCL12
heterodimers with CXCR7 have not been studied yet. Further, whether CXCL4-CXCL12 chemokine hetero-
dimerization may serve as a therapeutic target to prevent CXCL12-driven cell function is unknown.
Therefore, we will test the hypothesis that CXCL12 ß1-strand binding peptides, mimicking the CXCL4
interface with CXCL12, critically affect signaling and biological activities in well-delineated CXCL12-CXCR4/
CXCR7 driven signaling. Specifically, we will determine the inhibiting potential of CXCL12 ß1-strand binding
peptides in the CXCL12-CXCR4/CXCR7 driven signaling in macrophages and epithelial cells. The non-
overlapping specific aims of the study will define binding characteristics and optimize the CXCL12 ß1-
strand binding peptides (Aim 1); and determine the functional signaling modulating potential of CXCL12
ß1-strand binding peptides onto CXCR4 and CXCR7 (Aim 2), respectively. We will assess the CXCL12-
CXCL12 ß1-strand binding peptide heterodimer signaling onto CXCR4 and CXCR7 associated functional
activities on key cell functions, along with the optimal biophysical conditions promoting stable CXCL12-
CXCL12 ß1-strand binding peptide interactions and the potential of specific CXCL12 ß1-strand binding
peptides to inhibit CXCL12-CXCR4/CXCR7 signaling and modulate CXCL12-driven cell functions.
Together, the data gathered through the completion of the experiments associated with the completion of the
proposed aims will yield a better understanding of the CXCL12 heterodimer signaling onto CXCR4 and
CXCR7 and the potential of CXCL12 ß1-strand binding peptides in preventing altering CXCL12-driven
signaling and functions. Building on these results and targeting heterophilic interactions of chemokines,
our long-term goal is to develop a fundamental understanding of the functions of chemokine
heterodimers in chemokine signaling and their potential as target to prevent disease progression. This AREA
project will expose undergraduate students to an integrative and cross-disciplinary research environment by
extending training opportunities in the Departments of Biological Sciences and Physics and Optical Sciences at
the University of North Carolina Charlotte, a rapidly-growing urban institution that seeks to strengthen its
biomedical research program. This project has already attracted many undergraduate students through the PI’s
and co-I’s classroom teaching and will further provide undergraduates a hands-on experience with laboratory
research techniques and introduce them to a career in biomedical research. Students will participate in peer-to-
peer training at all levels, including an emphasis on skills needed for professional success such as teamwork
and communication.
抽象的
CXCR4/CXCR7-CXCL12 信号传导关键地调节免疫和癌细胞功能。
其他人已经确定了趋化因子异二聚体的存在和潜力,尤其是 CXCL4-CXCL12
与 CXCL12-CXCR4 信号传导的抑制相关,这表明存在一种新的调控目标机制。
这些新发现的相互作用(包括 CXCL4-CXCL12)的生物学后果
此外,CXCL4-CXCL12 趋化因子是否异源尚未研究。
二聚化是否可以作为阻止 CXCL12 驱动的细胞功能的治疗靶点尚不清楚。
因此,我们将测试 CXCL12 ß1 链结合肽的假设,模仿 CXCL4
与 CXCL12 的界面,严重影响明确的 CXCL12-CXCR4/ 中的信号传导和生物活性
具体来说,我们将确定 CXCR7 驱动的信号传导的抑制潜力。
CXCL12-CXCR4/CXCR7 中的肽驱动巨噬细胞和上皮细胞中的信号传导。
研究的重叠具体目标将定义结合特征并优化 CXCL12 ß1-
链结合肽(目标 1);并确定 CXCL12 的功能信号调节潜力
将 ß1 链结合肽分别连接至 CXCR4 和 CXCR7(目标 2),我们将评估 CXCL12-。
CXCL12 ß1 链结合肽异二聚体信号传导至 CXCR4 和 CXCR7 相关功能
对关键细胞功能的活性,以及促进稳定 CXCL12- 的生物物理条件
CXCL12 ß1 链结合肽相互作用和特异性 CXCL12 ß1 链结合的潜力
肽抑制 CXCL12-CXCR4/CXCR7 信号传导并调节 CXCL12 驱动的细胞功能。
总之,通过完成与完成相关的实验而收集的数据
提出的目标将更好地理解 CXCR4 上的 CXCL12 异二聚体信号传导以及
CXCR7 和 CXCL12 ß1 链结合肽在防止改变 CXCL12 驱动的方面的潜力
基于这些结果并针对趋化因子的异嗜性相互作用,
我们的长期目标是对趋化因子的功能有一个基本的了解
趋化因子信号传导中的异二聚体及其作为预防疾病进展的靶点的潜力。
该项目将使本科生接触到一个综合的、跨学科的研究环境
扩大生物科学、物理和光学科学系的培训机会
北卡罗来纳大学夏洛特分校是一所快速发展的城市机构,致力于加强其
该项目已经通过 PI 吸引了许多本科生。
和co-I的课堂教学,并将进一步为本科生提供实验室的实践经验
研究技术并向他们介绍生物医学研究的职业生涯。
各级同伴培训,包括强调职业成功所需的技能,例如团队合作
和沟通。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DIDIER DREAU其他文献
DIDIER DREAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
HMGCS2调控巨噬细胞训练免疫对动脉粥样硬化斑块“维稳”的机制研究
- 批准号:82373884
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于NLRP3炎性小体驱动的巨噬细胞焦亡研究穗花杉双黄酮抗动脉粥样硬化作用
- 批准号:82360786
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于HDAC10/PANX1探讨外源性褪黑素抑制巨噬细胞焦亡稳定动脉粥样硬化易损斑块的作用机制
- 批准号:82300511
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于仿生脂质纳米疫苗的动脉粥样硬化双重免疫治疗策略及机制研究
- 批准号:22305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
The regulation and functions of Group 1 CD1-restricted T cells
第 1 组 CD1 限制性 T 细胞的调节和功能
- 批准号:
10779737 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
T helper cells in development of chronic inflammation and multimorbidity
T辅助细胞在慢性炎症和多发病发展中的作用
- 批准号:
10737051 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
The oral microbiome as a window into the pathobiology of multiple sclerosis, leading to new ideas for personalized microbial therapies
口腔微生物组作为了解多发性硬化症病理学的窗口,为个性化微生物疗法带来新思路
- 批准号:
10819820 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别: