IMPACT: Integrative Mindfulness-Based Predictive Approach for Chronic low back pain Treatment
影响:基于正念的综合预测方法治疗慢性腰痛
基本信息
- 批准号:10794463
- 负责人:
- 金额:$ 164.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAmerican College of PhysiciansAnxietyArtificial IntelligenceBiologicalBiological MarkersBostonChronic low back painCircadian RhythmsClinical DataClinical TrialsCollaborationsComplementary therapiesComplexDataData AnalysesData CollectionData ReportingData ScientistData SetDecision MakingEpidemicEvaluationFundingHealth AllianceHeart RateHeroinIndividualInstitutional Review BoardsInterventionIntervention StudiesLifeMachine LearningMassachusettsMedicalMental DepressionMethodologyMethodsModalityMonitorMoronesMotor ActivityOpioidPainPain Management MethodPain ResearchPain managementParticipantPatient Self-ReportPatientsPatternPerformancePersonsPhasePhysical activityPilot ProjectsPopulation HeterogeneityPragmatic clinical trialProceduresRecommendationResearchResearch PersonnelRiskSamplingScientistSleepSocial supportSpecificityTestingTrainingUnited States National Institutes of HealthUniversitiesValidationWorkadverse outcomebiomedical scientistbiopsychosocialbiopsychosocial factorcandidate identificationcandidate validationchronic musculoskeletal painchronic painchronic pain managementchronic pain patientclinical decision-makingclinical trial protocolcostdiverse dataeffective interventioneffective therapyemotion regulationethnic diversityfitbithealth disparityheart rate variabilityhigh risk populationindividual responsemachine learning algorithmmachine learning methodmachine learning modelmedical schoolsmindfulnessmindfulness interventionmindfulness-based stress reductionmultimodal dataopioid abuseopioid overdosepain outcomepain patientpain reductionpatient responsepredicting responsepredictive modelingproductivity losspsychologicpsychosocialracial diversityrecruitresponseresponse biomarkersecondary analysissocialsuccesstargeted treatmenttooltreatment responsewearable device
项目摘要
IMPACT Abstract
Chronic pain impacts 50 million U.S. adults, severely interferes with the work and life of over 25 million,
and costs $635 billion annually for medical treatment and resultant loss of productivity. While some non-
pharmacological complementary pain management methods, such as Mindfulness-Based Stress Reduction
(MBSR), are effective at reducing the pain of some patients, others do not respond. Clinicians lack the tools to
accurately and reliably predict which patients will respond to complementary treatments. Racially and ethnically
diverse populations are also underrepresented in both research and practice of complementary interventions
despite increased risk for chronic pain and related adverse outcomes. In response to RFA-NS-22-050
(UG3/UH3), IMPACT – Integrative Mindfulness-Based Predictive Approach for Chronic low back pain
Treatment proposes using machine learning methods (a subfield of AI) to identify biopsychosocial predictive
and monitoring markers of the ’ response to MBSR for chronic low back pain (cLBP). This research will target a
diverse, high risk population suffering from cLBP (total n=350). Comprehensive biopsychosocial data (locomotor
activity, sleep, circadian rhythms, heart rate variability, depression, anxiety, pain outcomes, and social support)
will be collected from diverse patients treated with MBSR for cLBP. Aim 1 (UG3) will involve the initiation of a
clinical trial of MBSR for cLBP (n=50) and ML modeling with longitudinal biopsychosocial data and related clinical
trial datasets to identify candidate predictive and monitoring markers of the response to MBSR for cLBP prior to
expanding the trial in the UH3 phase. Milestones for transition from the UG3 phase (Aim 1) to the larger clinical
trial of the UH3 phase (Aims 2+3) will include: (1) finalized data collection and primary analysis protocols for the
clinical trial of MBSR for cLBP, (2) success with passive data collection procedures and experimentation with
ML model training and testing for the identification of predictive and monitoring biopsychosocial markers of the
response to MBSR for cLBP, and (3) preliminary validation of candidate ML-based biopsychosocial predictive
and monitoring markers of the response to MBSR for cLBP using statistical and cross-validation methods. Aim
2 (UH3) will expand the clinical trial initiated in Aim 1 to collect biopsychosocial data from a larger sample
(n=300). Aim 3 (UH3) will involve ML modeling with data collected in Aim 2 to identify and validate accurate
biopsychosocial predictive and monitoring markers of the response to MBSR for cLBP. To complete our aims,
clinician scientists from Boston University, University of Massachusetts Chan Medical School, and Cambridge
Health Alliance with extensive expertise in successfully recruiting and engaging diverse populations in clinical
trials of mindfulness interventions for pain will collaborate with biomedical, data scientists and machine learning
researchers from Worcester Polytechnic Institute. This proposed project will ultimately enhance clinical decision-
making and targeted treatment of cLBP.
影响摘要
慢性疼痛会影响5000万美国成年人,严重干扰了超过2500万的工作和寿命
每年花费6350亿美元用于医疗和导致生产率的损失。虽然有些非 -
药理学补充疼痛管理方法,例如基于正念的压力减轻
(MBSR)有效减轻某些患者的疼痛,其他患者没有反应。临床医生缺乏工具
准确,可靠地预测哪些患者将对完整的治疗做出反应。种族和种族
在完成干预措施的研究和实践中,潜水员人群的人数也不足
尽管增加了慢性疼痛和相关不良后果的风险。响应RFA-NS-22-050
(UG3/UH3),影响 - 基于正念的整合正念预测方法
使用机器学习方法(AI的子场)来识别生物心理学预测的治疗建议
并监视对MBSR的响应标记,以减少慢性下背部疼痛(CLBP)。这项研究将针对
潜水员,高风险人群患有CLBP(总n = 350)。全面的生物心理社会数据(运动
活动,睡眠,昼夜节律,心率变异性,抑郁,焦虑,疼痛结果和社会支持)
将从接受MBSR治疗的CLBP治疗的潜水员患者收集。 AIM 1(UG3)将涉及
MBSR的CLBP(n = 50)和ML模型的临床试验,并具有纵向生物心理社会数据和相关临床试验
试用数据集以识别候选人的预测和监视对MBSR的响应的CLBP的标记
在UH3阶段扩展试验。从UG3阶段(目标1)过渡到较大临床的里程碑
UH3阶段的试验(目标2+3)将包括:(1)最终数据收集和主要分析协议
MBSR的CLBP临床试验,(2)通过被动数据收集程序的成功和实验
ML模型培训和测试,以鉴定预测和监测的生物心理社会标记
CLBP对MBSR的响应,以及(3)基于ML ML的生物心理预测的初步验证
并使用统计和交叉验证方法监测对CLBP的响应标记。目的
2(UH3)将扩大在AIM 1中启动的临床试验,以从较大样本中收集生物心理社会数据
(n = 300)。 AIM 3(UH3)将与AIM 2中收集的数据进行ML建模,以识别和验证准确
CLBP对MBSR反应的生物心理社会预测和监测标记。为了完成我们的目标,
波士顿大学,马萨诸塞大学陈医学院和剑桥的临床科学家
卫生联盟具有广泛的专业知识,以成功招募和吸引潜水员人群参与临床
正念干预措施的疼痛试验将与生物医学,数据科学家和机器学习合作
伍斯特理工学院的研究人员。这个拟议的项目最终将增强临床决策 -
对CLBP进行靶向治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanuel Agu其他文献
Emmanuel Agu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanuel Agu', 18)}}的其他基金
Smartphone-based wound infection screener and care recommender by combining thermal images and photographs using deep learning methods
使用深度学习方法结合热图像和照片,基于智能手机的伤口感染筛查和护理推荐
- 批准号:
10442952 - 财政年份:2022
- 资助金额:
$ 164.32万 - 项目类别:
Smartphone-based wound infection screener and care recommender by combining thermal images and photographs using deep learning methods
使用深度学习方法结合热图像和照片,基于智能手机的伤口感染筛查和护理推荐
- 批准号:
10689270 - 财政年份:2022
- 资助金额:
$ 164.32万 - 项目类别:
SCH:Smartphone Wound Image Parameter Analysis and Decision Support in Mobile Env
SCH:移动环境中的智能手机伤口图像参数分析和决策支持
- 批准号:
9496652 - 财政年份:2018
- 资助金额:
$ 164.32万 - 项目类别:
SCH:Smartphone Wound Image Parameter Analysis and Decision Support in Mobile Env
SCH:移动环境中的智能手机伤口图像参数分析和决策支持
- 批准号:
10066353 - 财政年份:2018
- 资助金额:
$ 164.32万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 164.32万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 164.32万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 164.32万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 164.32万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 164.32万 - 项目类别: