Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer

将放射组学整合到 S0819 和 Lung-MAP、生物标​​志物驱动的肺癌临床试验中

基本信息

  • 批准号:
    10850084
  • 负责人:
  • 金额:
    $ 56.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The goal of this research is to clinically translate software tools we developed through the Quantitative Imaging Network and validate their ability to assess the response of cancer in clinical trials. Current RECIST response criteria are inadequate to detect tumor changes in targeted molecular therapy and immunotherapies, two of the most promising avenues for drug discovery. We hypothesize that innovative volumetric and radiomics signatures of response and progression, identified using our quantitative CT imaging tools, can be integrated into clinical trial workflow to meet the urgent need for alternatives to RECIST criteria. Two large multi-site trials present a unique opportunity to test this hypothesis in one disease treated with multiple therapeutic options driven by tissue biomarkers. S0819 is a completed Phase III trial with 1300+ patients and Lung- MAP (S1400) is an ongoing first-of-its-kind Phase II/III model projected to enroll up to 5,000 patients using a multi-drug, targeted screening approach to match patients with sub-studies testing investigational treatments based on their unique tumor profiles. Aim 1 tests whether change in tumor volume over time, measured by our advanced volumetric segmentation algorithms, outperforms unidimensional RECIST 1.1 response criteria. Aim 2 correlates genomic mutations identified in S0819 and Lung-MAP with radiomics signatures constructed by our machine learning models, with the goal of developing a non-invasive, easily repeatable virtual biopsy through CT imaging. Aim 3 validates the prediction of clinical outcomes using early biomarkers of response and progression based on quantitative CT-based radiomic features, hypothesized to outperform both RECIST and volumetrics alone across therapeutic options including chemotherapies, targeted molecular agents, and immune checkpoint blockade. Our work has substantial health significance because validation of volume and radiomic changes as early biomarkers of response or progression will guide clinical trials for drug discovery and help match patients to personalized treatment. Response criteria developed through this study will be widely applicable to clinical practice because CT is the most common cancer imaging modality and the quantitative image analysis tools can easily be incorporated into existing popular imaging platforms and clinical workflow, reducing the time required by radiologists. Data from this project, including anonymized imaging data (CT for all patients and PET for a large subset), clinical meta- data, and lesion mark-ups by independent radiologists, will be shared for use by other researchers through the TCGA Cancer Imaging Archive, continuing an extensive history of data sharing by this team.
这项研究的目标是将我们通过以下方式开发的软件工具进行临床翻译: 定量成像网络并验证其评估临床癌症反应的能力 试验。目前的 RECIST 反应标准不足以检测靶向的肿瘤变化 分子疗法和免疫疗法是药物发现的两种最有前途的途径。 我们假设反应和进展的创新体积和放射组学特征, 使用我们的定量 CT 成像工具识别的,可以集成到临床试验工作流程中 满足对 RECIST 标准替代品的迫切需求。两项大型多站点试验提出了 在采用多种治疗方案治疗的一种疾病中检验这一假设的独特机会 由组织生物标志物驱动。 S0819 是一项已完成的 III 期试验,有 1300 多名患者和肺 - MAP (S1400) 是一款正在进行中的同类首个 II/III 期模型,预计将招募多达 5,000 名患者 使用多药物、有针对性的筛选方法将患者与子研究相匹配的患者 根据其独特的肿瘤特征测试研究治疗方法。目标 1 测试是否 通过我们先进的体积分割测量肿瘤体积随时间的变化 算法,优于一维 RECIST 1.1 响应标准。目标 2 关联基因组 S0819 和 Lung-MAP 中鉴定的突变,具有由我们构建的放射组学特征 机器学习模型,目标是开发一种非侵入性、易于重复的虚拟模型 通过 CT 成像进行活检。目标 3 使用早期方法验证临床结果的预测 基于定量 CT 放射组学特征的反应和进展生物标志物, 假设在治疗方案中优于 RECIST 和单独的容量测定 包括化疗、靶向分子制剂和免疫检查点封锁。我们的 工作具有重大的健康意义,因为体积和放射组学变化的验证 反应或进展的早期生物标志物将指导药物发现的临床试验并提供帮助 让患者接受个性化治疗。通过本研究制定的响应标准将是 由于 CT 是最常见的癌症成像方式,因此广泛适用于临床实践 并且定量图像分析工具可以轻松地融入现有的流行成像中 平台和临床工作流程,减少放射科医生所需的时间。该项目的数据, 包括匿名影像数据(所有患者的 CT 数据和大部分患者的 PET 数据)、临床荟萃分析 独立放射科医生的数据和病变标记将被共享以供其他研究人员使用 通过 TCGA 癌症影像档案,继续广泛的数据共享历史 这支球队。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning-based identification of contrast-enhancement phase of computed tomography scans.
  • DOI:
    10.1371/journal.pone.0294581
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging.
  • DOI:
    10.1038/s41467-021-26990-6
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lu L;Dercle L;Zhao B;Schwartz LH
  • 通讯作者:
    Schwartz LH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence H Schwartz其他文献

Lawrence H Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence H Schwartz', 18)}}的其他基金

Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标​​志物驱动的肺癌临床试验中
  • 批准号:
    10177883
  • 财政年份:
    2018
  • 资助金额:
    $ 56.61万
  • 项目类别:
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标​​志物驱动的肺癌临床试验中
  • 批准号:
    10417115
  • 财政年份:
    2018
  • 资助金额:
    $ 56.61万
  • 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
  • 批准号:
    8048423
  • 财政年份:
    2011
  • 资助金额:
    $ 56.61万
  • 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
  • 批准号:
    8730457
  • 财政年份:
    2011
  • 资助金额:
    $ 56.61万
  • 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
  • 批准号:
    8544405
  • 财政年份:
    2011
  • 资助金额:
    $ 56.61万
  • 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
  • 批准号:
    8327118
  • 财政年份:
    2011
  • 资助金额:
    $ 56.61万
  • 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
  • 批准号:
    7321437
  • 财政年份:
    2007
  • 资助金额:
    $ 56.61万
  • 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
  • 批准号:
    8150965
  • 财政年份:
    2007
  • 资助金额:
    $ 56.61万
  • 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
  • 批准号:
    7876979
  • 财政年份:
    2007
  • 资助金额:
    $ 56.61万
  • 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
  • 批准号:
    7479571
  • 财政年份:
    2007
  • 资助金额:
    $ 56.61万
  • 项目类别:

相似国自然基金

用于脑肿瘤个性化治疗的可解释性深度放射组学模型
  • 批准号:
    82260360
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于迁移学习及跨模态放射基因组学特征的结直肠癌异质性研究
  • 批准号:
    82203192
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
唾液腺亚区影像组学预测持久性放射性口干的基础与转化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
影像组学引导早期非小细胞肺癌立体定向质子放射治疗精准计划研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于超高分辨细胞微结构三维成像的磨玻璃肺结节瘤周放射组学特征研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Radiomicsを用いた転移性腎癌における適正使用薬剤の検討
使用放射组学检查药物在转移性肾癌中的适当使用
  • 批准号:
    24K15164
  • 财政年份:
    2024
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Radiomics解析を用いた副作用発生率画像の生成とそれに基づく放射線治療計画法の開発
使用放射组学分析生成副作用发生图像并开发基于此的放射治疗计划方法
  • 批准号:
    24K18772
  • 财政年份:
    2024
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
頭頸部癌微小環境内の三次リンパ組織様構造をターゲットとしたRadiomics解析
针对头颈癌微环境内的三级淋巴组织样结构的放射组学分析
  • 批准号:
    24K18786
  • 财政年份:
    2024
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
新世代半導体PETとSPECTのRadiomics解析による顎骨疾患の治療戦略的画像診断法の開発
利用新一代半导体 PET 和 SPECT 放射组学分析开发治疗颌骨疾病的战略影像诊断方法
  • 批准号:
    24K13234
  • 财政年份:
    2024
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AIを活用したFDG-PET/CT radiomics解析によるSTAS予測モデルの構築
利用 AI 进行 FDG-PET/CT 放射组学分析构建 STAS 预测模型
  • 批准号:
    24K18800
  • 财政年份:
    2024
  • 资助金额:
    $ 56.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了