Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
基本信息
- 批准号:10850084
- 负责人:
- 金额:$ 56.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to clinically translate software tools we developed through the
Quantitative Imaging Network and validate their ability to assess the response of cancer in clinical
trials. Current RECIST response criteria are inadequate to detect tumor changes in targeted
molecular therapy and immunotherapies, two of the most promising avenues for drug discovery.
We hypothesize that innovative volumetric and radiomics signatures of response and progression,
identified using our quantitative CT imaging tools, can be integrated into clinical trial workflow to
meet the urgent need for alternatives to RECIST criteria. Two large multi-site trials present a
unique opportunity to test this hypothesis in one disease treated with multiple therapeutic options
driven by tissue biomarkers. S0819 is a completed Phase III trial with 1300+ patients and Lung-
MAP (S1400) is an ongoing first-of-its-kind Phase II/III model projected to enroll up to 5,000
patients using a multi-drug, targeted screening approach to match patients with sub-studies
testing investigational treatments based on their unique tumor profiles. Aim 1 tests whether
change in tumor volume over time, measured by our advanced volumetric segmentation
algorithms, outperforms unidimensional RECIST 1.1 response criteria. Aim 2 correlates genomic
mutations identified in S0819 and Lung-MAP with radiomics signatures constructed by our
machine learning models, with the goal of developing a non-invasive, easily repeatable virtual
biopsy through CT imaging. Aim 3 validates the prediction of clinical outcomes using early
biomarkers of response and progression based on quantitative CT-based radiomic features,
hypothesized to outperform both RECIST and volumetrics alone across therapeutic options
including chemotherapies, targeted molecular agents, and immune checkpoint blockade. Our
work has substantial health significance because validation of volume and radiomic changes as
early biomarkers of response or progression will guide clinical trials for drug discovery and help
match patients to personalized treatment. Response criteria developed through this study will be
widely applicable to clinical practice because CT is the most common cancer imaging modality
and the quantitative image analysis tools can easily be incorporated into existing popular imaging
platforms and clinical workflow, reducing the time required by radiologists. Data from this project,
including anonymized imaging data (CT for all patients and PET for a large subset), clinical meta-
data, and lesion mark-ups by independent radiologists, will be shared for use by other researchers
through the TCGA Cancer Imaging Archive, continuing an extensive history of data sharing by
this team.
这项研究的目的是临床翻译我们通过的软件工具
定量成像网络并验证其评估临床癌症反应的能力
试验。当前的恢复响应标准不足以检测靶向的肿瘤变化
分子疗法和免疫疗法,这是药物发现最有前途的两种途径。
我们假设响应和进展的创新体积和放射线学特征,
使用我们的定量CT成像工具确定,可以将其集成到临床试验工作流程中
满足迫切需要恢复标准的替代需求。两个大型多站点试验呈现
在用多种治疗选择治疗的一种疾病中检验这一假设的独特机会
由组织生物标志物驱动。 S0819是一项完整的III期试验,有1300多名患者和肺
MAP(S1400)是一种持续的II II/III阶段模型,预计将注册多达5,000
使用多药,有针对性筛查方法与子研究患者相匹配的患者
根据其独特的肿瘤特征测试研究治疗。 AIM 1测试是否
随着时间的推移,肿瘤体积的变化,通过我们的晚期体积分割来衡量
算法,优于一维再及时响应标准。 AIM 2相关基因组
在S0819中鉴定出的突变和肺图与我们的放射线学特征由我们构建
机器学习模型,目的是开发非侵入性,易于重复的虚拟
通过CT成像进行活检。 AIM 3使用早期验证了临床结果的预测
基于定量CT的放射线特征的反应和进展的生物标志物,
假设仅在治疗方案中仅均超过恢复和体积
包括化学疗法,靶向分子剂和免疫检查点阻滞。我们的
工作具有很大的健康意义,因为验证数量和放射素变化为
早期反应或进展的生物标志物将指导临床试验进行药物发现和帮助
将患者与个性化治疗相匹配。通过这项研究制定的响应标准将是
广泛适用于临床实践,因为CT是最常见的癌症成像方式
并且可以轻松地将定量图像分析工具合并到现有的流行成像中
平台和临床工作流程,减少了放射科医生所需的时间。来自该项目的数据,
包括匿名成像数据(所有患者的CT和大子集的PET),临床元
独立放射科医生的数据和病变标记将与其他研究人员共享
通过TCGA癌症成像档案,延续了广泛的数据共享历史
这个团队。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correction to: A quantitative imaging biomarker for predicting disease-free-survival-associated histologic subgroups in lung adenocarcinoma.
- DOI:10.1007/s00330-020-07036-9
- 发表时间:2020-12
- 期刊:
- 影响因子:5.9
- 作者:
- 通讯作者:
Differentiation of Focal-Type Autoimmune Pancreatitis From Pancreatic Ductal Adenocarcinoma Using Radiomics Based on Multiphasic Computed Tomography.
- DOI:10.1097/rct.0000000000001049
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:
- 通讯作者:
Machine learning-based identification of contrast-enhancement phase of computed tomography scans.
- DOI:10.1371/journal.pone.0294581
- 发表时间:2024
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Effect of CT image acquisition parameters on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes.
- DOI:10.1007/s00330-021-08274-1
- 发表时间:2022-03
- 期刊:
- 影响因子:5.9
- 作者:
- 通讯作者:
Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging.
- DOI:10.1038/s41467-021-26990-6
- 发表时间:2021-11-17
- 期刊:
- 影响因子:16.6
- 作者:Lu L;Dercle L;Zhao B;Schwartz LH
- 通讯作者:Schwartz LH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence H Schwartz其他文献
Lawrence H Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence H Schwartz', 18)}}的其他基金
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10177883 - 财政年份:2018
- 资助金额:
$ 56.61万 - 项目类别:
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10417115 - 财政年份:2018
- 资助金额:
$ 56.61万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8048423 - 财政年份:2011
- 资助金额:
$ 56.61万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8730457 - 财政年份:2011
- 资助金额:
$ 56.61万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8544405 - 财政年份:2011
- 资助金额:
$ 56.61万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8327118 - 财政年份:2011
- 资助金额:
$ 56.61万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7321437 - 财政年份:2007
- 资助金额:
$ 56.61万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
8150965 - 财政年份:2007
- 资助金额:
$ 56.61万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7876979 - 财政年份:2007
- 资助金额:
$ 56.61万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7643350 - 财政年份:2007
- 资助金额:
$ 56.61万 - 项目类别:
相似国自然基金
硝酸银对支气管胸膜瘘气道内支架封堵术后残腔愈合的影响及其机制
- 批准号:81871466
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
超选择性肝动脉栓塞术治疗多囊肝的基础及临床研究
- 批准号:81801801
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Radiomics的中心型肺癌定量治疗评估与预后研究
- 批准号:61702087
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
生物可降解药物涂层胆道支架治疗良性胆道狭窄的实验研究
- 批准号:81671796
- 批准年份:2016
- 资助金额:56.0 万元
- 项目类别:面上项目
糖代谢异常在肝癌介入中的作用及治疗研究
- 批准号:81671798
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10177883 - 财政年份:2018
- 资助金额:
$ 56.61万 - 项目类别:
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10417115 - 财政年份:2018
- 资助金额:
$ 56.61万 - 项目类别:
Study on a type of chemotherapy regimen that induces immune status into response pattern for anti-PD-1 antibody in small lung cancer patients
将免疫状态诱导为小肺癌患者抗PD-1抗体反应模式的一类化疗方案的研究
- 批准号:
17K09665 - 财政年份:2017
- 资助金额:
$ 56.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated system for evaluating external and internal doses from radionuclides released into the environment
用于评估释放到环境中的放射性核素的外部和内部剂量的集成系统
- 批准号:
17K07017 - 财政年份:2017
- 资助金额:
$ 56.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integration of radiomics methods into convolutional neural networks for tumour aggressiveness assessment
将放射组学方法集成到卷积神经网络中以评估肿瘤侵袭性
- 批准号:
516754-2018 - 财政年份:2017
- 资助金额:
$ 56.61万 - 项目类别:
Postdoctoral Fellowships