Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
基本信息
- 批准号:8327118
- 负责人:
- 金额:$ 58.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAntineoplastic AgentsBAY 54-9085BiochemicalBiochemical MarkersBiological MarkersBiologyBlindedCancer and Leukemia Group BClinicalClinical DataClinical TreatmentClinical TrialsCompanionsComplexComputer AssistedComputersCytotoxic ChemotherapyDataDevelopmentEnrollmentEpidermal Growth Factor ReceptorEvaluationFutureGoalsGrantHealthHome environmentImageImage AnalysisInstructionInterventionLesionLiverLungLymphMalignant NeoplasmsMeasurementMeasuresMedical ImagingMethodsModelingMolecularMutationNecrosisNon-Small-Cell Lung CarcinomaOilsOutcomePalpationPatientsPhasePredictive ValuePrimary carcinoma of the liver cellsPrincipal InvestigatorProbabilityReaderReproducibilityResearchRunningSolid NeoplasmStudy modelsTechnologyTestingTimeTranslatingTumor BurdenTumor VolumeValidationWorkbasecancer therapyclinical practicecytotoxicdensitydetectordrug developmentdrug discoveryevidence basefollow-upimaging modalityimprovedlung volumelymph nodesnovelphase 2 studyradiologistresearch clinical testingresponsesarcomasoft tissuetumor
项目摘要
DESCRIPTION (provided by applicant): The goal of this research is to develop new response assessments for cancer treatment based on CT imaging of changes in tumor volume and necrosis fraction. Current RECIST criteria and cut-off values for response assessment are not evidence-based and may fail to detect the tumor changes associated with clinical response to targeted, non-cytotoxic treatments. This study will seek a proof of concept using two types of tumors in which RECIST is known to correlate poorly with tumor response to treatment and clinical outcome. HCC is one of the most common malignancies worldwide, and sarcomas, though rare, carry the same molecular alterations as many other heterogeneous cancers and are the classic cancer studied in drug discovery. Aim 1 will demonstrate that assistance from new automated segmentation algorithms can reduce the variability in radiologists' measurement of lung, liver, and lymph tumors. This aim will use images from 276 patients already collected by SARC 011, a large phase II multicenter clinical trial of sarcoma. Aim 2 will correlate tumor volume and necrosis fraction with clinical outcome in SARC 011 and CALGB 80802, a phase trial of HCC with an estimated enrollment of 480 patients. The proposed research will first develop criteria based on quantitative biomarkers (tumor volume and necrosis fraction) and then compare the predictive value of these criteria to the current clinical standard using a concordance probability estimate. Aim 3 will explore the correlation of these criteria to other biochemical markers, and use a concordance probability estimate to determine whether the combination of imaging biomarkers with biochemical markers affords superior prediction of patient survival as compared to either alone. This aim will use data from three companion biology studies of SARC 011 and CALGB 80802. Development and validation of the new criteria will have substantial health significance because evidence that volume and necrosis changes are early biomarkers of response or progression will guide clinical trials and patient treatment. The new criteria will be widely applicable to clinical practice because CT is the most common imaging modality for cancer, the new algorithms run on popular imaging platforms, and this method will reduce the time required by radiologists. RELEVANCE (See instructions); When new treatments for cancer are being tested, images of the patients' tumor are measured to determine whether the treatment is working. By developing a better way to measure tumor changes caused by treatment, this research will aid the discovery of cancer drugs and help match patients to the treatment that works best for them.
描述(由申请人提供):本研究的目标是基于肿瘤体积和坏死分数变化的 CT 成像来开发新的癌症治疗反应评估。目前的 RECIST 标准和疗效评估的临界值不是基于证据的,可能无法检测与靶向非细胞毒性治疗的临床反应相关的肿瘤变化。这项研究将寻求使用两种类型的肿瘤进行概念验证,已知 RECIST 与肿瘤对治疗的反应和临床结果的相关性较差。 HCC 是全世界最常见的恶性肿瘤之一,肉瘤虽然罕见,但与许多其他异质性癌症具有相同的分子改变,是药物发现中研究的经典癌症。目标 1 将证明新的自动分割算法的帮助可以减少放射科医生测量肺、肝和淋巴肿瘤的变异性。该目标将使用 SARC 011(一项大型肉瘤 II 期多中心临床试验)已收集的 276 名患者的图像。目标 2 将肿瘤体积和坏死分数与 SARC 011 和 CALGB 80802 的临床结果相关联,这是一项 HCC 阶段试验,预计入组 480 名患者。拟议的研究将首先制定基于定量生物标志物(肿瘤体积和坏死分数)的标准,然后使用一致性概率估计将这些标准的预测值与当前的临床标准进行比较。目标 3 将探索这些标准与其他生化标记物的相关性,并使用一致性概率估计来确定成像生物标记物与生化标记物的组合是否比单独使用任何一种标记物能够更好地预测患者生存。该目标将使用 SARC 011 和 CALGB 80802 的三项伴随生物学研究的数据。新标准的制定和验证将具有重大的健康意义,因为体积和坏死变化是反应或进展的早期生物标志物的证据将指导临床试验和患者治疗。新标准将广泛适用于临床实践,因为CT是最常见的癌症成像方式,新算法在流行的成像平台上运行,这种方法将减少放射科医生所需的时间。相关性(参见说明);当测试新的癌症治疗方法时,会测量患者肿瘤的图像以确定治疗是否有效。通过开发一种更好的方法来测量治疗引起的肿瘤变化,这项研究将有助于发现癌症药物,并帮助患者匹配最适合他们的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence H Schwartz其他文献
Lawrence H Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence H Schwartz', 18)}}的其他基金
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10177883 - 财政年份:2018
- 资助金额:
$ 58.37万 - 项目类别:
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10417115 - 财政年份:2018
- 资助金额:
$ 58.37万 - 项目类别:
Integrating Radiomics into S0819 and Lung-MAP, Biomarker Driven Clinical Trials for Lung Cancer
将放射组学整合到 S0819 和 Lung-MAP、生物标志物驱动的肺癌临床试验中
- 批准号:
10850084 - 财政年份:2018
- 资助金额:
$ 58.37万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8048423 - 财政年份:2011
- 资助金额:
$ 58.37万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8730457 - 财政年份:2011
- 资助金额:
$ 58.37万 - 项目类别:
Quantitative Volume and Density Response Assessment: Sarcoma and HCC as a Model
定量体积和密度响应评估:肉瘤和 HCC 作为模型
- 批准号:
8544405 - 财政年份:2011
- 资助金额:
$ 58.37万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7321437 - 财政年份:2007
- 资助金额:
$ 58.37万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
8150965 - 财政年份:2007
- 资助金额:
$ 58.37万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7876979 - 财政年份:2007
- 资助金额:
$ 58.37万 - 项目类别:
Advanced Anatomic and Functional Response Assessment in Lung Cancer
肺癌的高级解剖和功能反应评估
- 批准号:
7479571 - 财政年份:2007
- 资助金额:
$ 58.37万 - 项目类别:
相似国自然基金
具有协同药效的金配合物前药分子设计、可控性活化和抗肿瘤活性研究
- 批准号:22377154
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“减毒增效”—一类新型核苷类抗肿瘤前药的发现与生物学研究
- 批准号:82304303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
荷载鞭毛蛋白的载药囊泡激发中性粒细胞抗肿瘤效应及其机制研究
- 批准号:82303724
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光笼型Mcl-1抑制剂前药的构建与光活化靶向抗肿瘤作用研究
- 批准号:82304305
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶酶体靶向聚集性无药抗肿瘤纳米颗粒的研究
- 批准号:52303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic Biocontainment Switch to Improve the Safety of Drug Detoxifying Bacteria in Preventing Chemotherapy-induced Diarrhea
基因生物防护开关提高药物解毒细菌预防化疗引起的腹泻的安全性
- 批准号:
10698718 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
PEA15 IN DEVELOPMENT OF LIVER CANCER AND ITS THERAPEUTIC IMPLICATION
PEA15 在肝癌发展中的作用及其治疗意义
- 批准号:
10329953 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别:
PEA15 IN DEVELOPMENT OF LIVER CANCER AND ITS THERAPEUTIC IMPLICATION
PEA15 在肝癌发展中的作用及其治疗意义
- 批准号:
10554410 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别:
A Pharmacogenomic Approach Using Precision Models of Hepatocellular Carcinoma to Identify Novel Therapeutics
使用肝细胞癌精密模型来识别新疗法的药物基因组学方法
- 批准号:
10179334 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别:
A Pharmacogenomic Approach Using Precision Models of Hepatocellular Carcinoma to Identify Novel Therapeutics
使用肝细胞癌精密模型来识别新疗法的药物基因组学方法
- 批准号:
9910997 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别: