Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine

神经元对短暂多巴胺和长时间多巴胺反应相反的机制

基本信息

  • 批准号:
    7554141
  • 负责人:
  • 金额:
    $ 32.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-01-05 至 2012-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Drug abuse is a chronic and devastating disease, costing society over 200 billion per year. The problem is widespread; in 2004, over 34 million Americans reported lifetime use of cocaine. One of NIDA's top research priorities is finding drugs to block cocaine's effects, which will require an understanding of the molecular mechanisms of addiction. Persistent use of cocaine leads to maladaptations in reward-related learning such that the drug is prized above all other rewards, and is compulsively sought after and used, despite severe negative consequences (addiction). Cocaine prevents dopamine (DA) reuptake. A single dose of an addictive drug can elevate synaptic DA for hours. It is not clear how repeated, prolonged elevations in [DA] disrupt the normal mechanisms of associative learning and memory. Such processes depend upon the flow of ions through channels in the neuronal membrane (ion currents); therefore, the densities and characteristics of ion channels in the neuronal membrane help to determine the neuron's capacity to engage in mechanisms of learning and memory. Both cocaine and DA are known to alter ion current densities. Perhaps cocaine-induced aberrations in learning and memory are due to changes in ion current densities resulting from prolonged elevations in DA. Elucidating the processes by which prolonged elevations in synaptic DA lead to changes in ion current densities may lead to a deeper appreciation for how addiction usurps the normal mechanisms of reward related learning and memory. The transient potassium current (IA) is important for learning and memory. Kv4 channels mediate IA. Using a model circuit, the crustacean pyloric network, we found that when DA binds to its receptors, D1 and D2, they produce global biochemical signals that have different effects on IA density over the short- and long-term. For example, in response to a brief application of DA, D2 receptors mediate an increase in IA density. On the other hand, a prolonged 4hr. application of DA produces a D2 mediated, persistent decrease in IA density 10-12 hrs. after DA has been removed. This proposal focuses on the mechanism(s) by which brief versus prolonged applications of DA produce opposing effects on IA density. We specifically test the hypothesis that DA induces global changes in [cAMP] that then alter the phosphorylation state of both Kv4 channels and a transcription factor named CREB. Whereas changes in Kv4 channels are relatively short-lived, modifications in CREB activity are long-lived and result in alterations in Kv4 transcript number. Here we propose to use molecular biology and electrophysiology techniques to measure and correlate changes in global [cAMP], IA density and shal transcript number. Furthermore, pharmacological tools will be used to antagonize or mimic global changes in [cAMP] to determine if they underlie the changes in IA density and shal transcript number. Additionally, expression of a dominant-negative CREB protein and visualization of protein kinase A translocation using confocal microscopy will help to determine if CREB is involved in mediating the long-term response. One of NIDA's top research priorities is finding drugs to block cocaine's effects. This will require an understanding of the mechanisms by which cocaine acts. Cocaine causes a prolonged exposure of neurons to dopamine, which in turn causes many alterations to neuronal function. This grant aims to understand the mechanisms by which prolonged dopamine alters neuronal function.
描述(由申请人提供):药物滥用是一种慢性和毁灭性的疾病,每年使社会超过2000亿。这个问题很普遍; 2004年,超过3400万美国人报告了可卡因的终生使用。 NIDA的主要研究重点之一是找到可以阻止可卡因作用的药物,这将需要了解成瘾的分子机制。持续使用可卡因会导致与奖励相关的学习中的适应不良,因此尽管严重的负面后果(成瘾),该药物高于所有其他奖励,并在所有其他奖励中都受到了强迫的追捧和使用。可卡因可防止多巴胺(DA)再摄取。单剂量上瘾的药物可以将突触DA提升数小时。目前尚不清楚[DA]如何重复,延长高程破坏联想学习和记忆的正常机制。这样的过程取决于离子通过神经元膜中的通道的流动(离子电流);因此,神经元膜中离子通道的密度和特征有助于确定神经元参与学习和记忆机制的能力。可卡因和DA都可以改变离子电流密度。也许可卡因引起的学习和记忆中的畸变是由于DA高度长时间导致的离子当前密度变化所致。阐明突触DA的长时间高程导致离子当前密度变化的过程可能会更深入地理解成瘾如何篡夺奖励相关学习和记忆的正常机制。瞬态钾电流(IA)对于学习和记忆很重要。 KV4通道介导IA。使用模型电路,甲壳类幽门网络,我们发现当DA与其受体D1和D2结合时,它们会产生全局的生化信号,这些信号在短期和长期内对IA密度具有不同的影响。例如,为了响应DA的短暂应用,D2受体介导了IA密度的增加。另一方面,延长了4小时。 DA的应用产生D2介导的IA密度持续降低10-12小时。 DA被删除后。该提案着重于短暂和长时间应用对IA密度产生相反影响的机制。我们特别检验了DA诱导[CAMP]的全局变化的假设,该假设随后改变了KV4通道的磷酸化状态和名为CREB的转录因子的磷酸化状态。尽管KV4通道的变化是相对短暂的,但CREB活性的修改是长期的,并导致KV4转录数的变化。在这里,我们建议使用分子生物学和电生理技术来衡量和相关的全球[CAMP],IA密度和SHAL转录数的变化。此外,药理学工具将用于对抗或模仿[CAMP]的全球变化,以确定它们是否是IA密度和SHAL转录数的变化的基础。此外,使用共聚焦显微镜的易位的显性阴性CREB蛋白和蛋白激酶A易位的可视化将有助于确定CREB是否参与介导长期反应。 NIDA最重要的研究重点之一是发现药物可以阻止可卡因的作用。这将需要了解可卡因作用的机制。可卡因导致神经元长期暴露于多巴胺,这又导致神经元功能的许多改变。该赠款旨在了解延长多巴胺改变神经元功能的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deborah Jean Baro其他文献

Deborah Jean Baro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deborah Jean Baro', 18)}}的其他基金

Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    7352163
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    8014897
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    8266952
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    8210997
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    7790835
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
Mechanisms underlying opposing neuronal responses to brief vs. prolonged dopamine
神经元对短暂多巴胺和长时间多巴胺反应相反的机制
  • 批准号:
    7745449
  • 财政年份:
    2008
  • 资助金额:
    $ 32.51万
  • 项目类别:
CELL SPECIFIC DIFFERENCE IN PHOSPHORYLATION OF K CNANNEL
K 通道磷酸化的细胞特异性差异
  • 批准号:
    6660075
  • 财政年份:
    2002
  • 资助金额:
    $ 32.51万
  • 项目类别:
CELL SPECIFIC DIFFERENCE IN PHOSPHORYLATION OF K CNANNEL
K 通道磷酸化的细胞特异性差异
  • 批准号:
    6644297
  • 财政年份:
    2002
  • 资助金额:
    $ 32.51万
  • 项目类别:
CELL SPECIFIC DIFFERENCE IN PHOSPHORYLATION OF K CNANNEL
K 通道磷酸化的细胞特异性差异
  • 批准号:
    6504107
  • 财政年份:
    2001
  • 资助金额:
    $ 32.51万
  • 项目类别:
MOLECULAR MECHANISMS UNDERLYING IA DIVERSITY
IA 多样性的分子机制
  • 批准号:
    6629314
  • 财政年份:
    2000
  • 资助金额:
    $ 32.51万
  • 项目类别:

相似国自然基金

拟南芥中EIN2蛋白调控mRNA翻译并激活乙烯信号的生化机制研究
  • 批准号:
    31870254
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
大米蛋白/阿魏酸的结合机制对复合物的抗氧化及模拟胃肠消化性能的调控研究
  • 批准号:
    31760433
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
拟南芥fimbrin5调控花粉管生长的细胞学基础和生化机制分析
  • 批准号:
    31671390
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
拟南芥微丝解聚因子第三亚家族成员生理生化功能研究
  • 批准号:
    31670180
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
结合神经分类的分子超光谱成像生化指标定量分析研究
  • 批准号:
    61240006
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
  • 批准号:
    10508305
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
  • 批准号:
    10597840
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
Development and characterization of anti-P. gingivalis peptides
抗 P 的开发和表征。
  • 批准号:
    10625080
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
  • 批准号:
    10901007
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了