Mechanisms of genomic instability, tumor initiation and progression following the disruption of the RTF2-RNase H2 axis

RTF2-RNase H2 轴破坏后基因组不稳定、肿瘤发生和进展的机制

基本信息

项目摘要

Project Summary/Abstract The aberrant incorporation or retention of ribonucleic acids (RNAs) in the genome is a common cause of genomic instability, rendering it susceptible to hydrolysis and downstream mutagenesis. The enzyme RNase H2 is one of the primary mechanisms protecting against this destabilization of the genome by removing these genome- embedded RNAs. Our lab recently uncovered a novel mechanism of regulation of RNase H2, by uncovering that replication termination factor 2 (RTF2) is involved in localizing and regulating the levels of RNase H2 at the replication fork. Further elucidation of this interaction is required to understand the basic biology behind the regulation and function of how RNase H2 prevents genome instability. Interestingly, copy number loss of RNase H2 is commonly found in Chronic Lymphocytic Leukemia (CLL), in over 30% of cases. In my preliminary work, I have developed various cellular models in which RNase H2 and RTF2 can be depleted, and I have expressed and purified recombinant RNase H2 and RTF2, allowing for both in vivo studies of which RNase H2 activities are regulated by RTF2 and in vitro studies of their interaction. Furthermore, I have developed a novel assay allowing a quantitative analysis of ribonucleotide incorporation in the genomes of human cells. This assay will be used to study the regulation of RNase H2 by RTF2, and will be assessed in its applicability to predict CLL responses to PARP-inhibitors. The direct mechanism behind tumor progression in the loss of RNase H2 has not been studied. In this proposal, building on my above preliminary work, I will test the hypothesis that RTF2 interacts directly with and regulates the activities of RNase H2 at the replication fork and examine the mechanism behind how loss of RNase H2 compromises genomic stability and leads to tumor progression. I am an MD/PhD student at the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional Program, where I am in the laboratory of Dr. Agata Smogorzewska at The Rockefeller University. My long-term goal is to become a physician scientist, practicing as a hematologist-oncologist as well as running an independent basic science lab as an academic university hospital. The plan outlined in this proposal, along with the support and mentorship of Dr. Agata Smogorzewska, my thesis research committee, and the Tri-Institutional MD-PhD program will help me achieve these career aspirations.
项目摘要/摘要 基因组中核糖核酸(RNA)的异常掺入或保留是基因组的常见原因 不稳定,使其容易受到水解和下游诱变的影响。酶RNase H2是 通过去除这些基因组 - 嵌入的RNA。 我们的实验室最近通过发现复制来揭示了RNase H2调节的新型机制 终止因子2(RTF2)涉及在复制叉处定位和调节RNase H2的水平。 需要进一步阐明这种相互作用,以了解调节背后的基本生物学和 RNase H2如何防止基因组不稳定性的功能。有趣的是,RNase H2的拷贝数损失通常为 在慢性淋巴细胞性白血病(CLL)中发现,超过30%的病例。在我的初步工作中,我已经开发了 RNase H2和RTF2可以耗尽的各种细胞模型,我已经表达和纯化 重组RNase H2和RTF2,允许调节RNase H2活性的两个体内研究 通过RTF2及其相互作用的体外研究。此外,我已经开发了一种新颖的测定法 人类细胞基因组中核糖核苷酸掺入的定量分析。该测定将习惯 研究RTF2对RNase H2的调节,并将在其适用性中进行评估以预测CLL的响应 PARP抑制剂。尚未研究RNase H2丢失中肿瘤进展的直接机制。 在此提案中,在我上述初步工作的基础上,我将测试RTF2直接相互作用的假设 并调节RNase H2在复制叉处的活性,并检查损失如何丢失的机制 RNase H2损害了基因组稳定性并导致肿瘤进展。 我是Weill Cornell/Rockefeller/Sloan Kettering Tri机构计划的医学博士/博士学位学生 在洛克菲勒大学的Agata Smogorzewska博士实验室中。我的长期目标是成为一个 医师科学家,作为血液学家对起医生的实践,并运行独立的基础科学实验室 作为学术大学医院。该提案中概述的计划,以及 Agata Smogorzewska博士,我的论文研究委员会和三机构MD-PHD计划将帮助我 实现这些职业愿望。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolas Johannes Blobel其他文献

Nicolas Johannes Blobel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolas Johannes Blobel', 18)}}的其他基金

Mechanisms of genomic instability, tumor initiation and progression following the disruption of the RTF2-RNase H2 axis
RTF2-RNase H2 轴破坏后基因组不稳定、肿瘤发生和进展的机制
  • 批准号:
    10537173
  • 财政年份:
    2022
  • 资助金额:
    $ 5.27万
  • 项目类别:

相似国自然基金

等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
  • 批准号:
    32370714
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
  • 批准号:
    82300353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
  • 批准号:
    82302575
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
  • 批准号:
    32302535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
  • 批准号:
    10711312
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
  • 批准号:
    10580294
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
  • 批准号:
    10587460
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Data Resource and Administrative Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes Consortium
精神科和神经发育障碍风险基因联盟的可扩展和系统神经生物学数据资源和行政协调中心
  • 批准号:
    10642251
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Assay and Data Generation Center (ADGC) for the Model of iPSC-derived Neurons for NPD (MiNND)
用于 NPD (MiNND) iPSC 衍生神经元模型的测定和数据生成中心 (ADGC)
  • 批准号:
    10653338
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了