Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
基本信息
- 批准号:10711312
- 负责人:
- 金额:$ 40.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesAtlasesBiologicalCellsComputer softwareComputing MethodologiesDataData AnalysesData SetDiagnosisDisciplineDiseaseEnvironmental HealthExperimental DesignsFaceGene ExpressionGoalsHealthHumanImageIndividualKnowledgeMalignant NeoplasmsMethodsMolecularNeurodegenerative DisordersPreventionPrognosisRNA SplicingResearchResearch PersonnelSamplingSpecificityTechnologyTissuesVariantWorkcell typecomplex datacomputerized toolsexperienceexperimental groupgenomic dataimprovedmHealthmultidimensional dataopen sourceprecision medicineprogramstooltranscriptome sequencingtranscriptomicstreatment response
项目摘要
Project Summary/Abstract
Understanding the spatial landscape of gene expression in tissues is a fundamental question for human health
and disease. Applications range from identifying the spatial organization of cell types to dysregulation of
spatial-dependent gene expression associated with disease. Advances in technologies, such as
spatially-resolved transcriptomics (SRT), provide a wealth of data to investigate these questions. Furthermore,
SRT combined with advances in long-read RNA-sequencing enable applications such as identifying
spatial-dependent splicing variation and allele specificity in healthy and disease states, such as cancer or
neurodegenerative disorders. Recent SRT studies are generating datasets across multiple samples (different
donors or adjacent tissue sections), but researchers analyze samples independently because there lack
computational tools for datasets with multiple samples. In contrast, when samples are jointly analyzed together,
the statistical power is increased to detect differences with greater accuracy and precision. The lack of tools to
analyze SRT data with multiple samples is a significant knowledge gap that limits are ability to refine the
molecular causes and consequences of diseases that can be targeted for prevention and treatment.
My research program develops scalable computational methods and open-source software for biomedical data
analysis, in particular single-cell and spatial transcriptomics data, leading to an improved understanding of
human health and disease. Here, our goal is to focus on developing scalable computational methods and
software for data from spatial and long-read technologies with multiple samples and experimental conditions to
accurately (1) predict spatial domains of tissues across multiple samples, (2) identify differences in spatial gene
expression across experimental conditions or biological groups with multiple samples in each group, and (3)
identify differential splicing variation across spatial domains or experimental conditions.
The rationale for the proposed work is that the computational tools developed will enable substantial advances
in our understanding of the spatial landscape of gene expression on distinct scales from cells to tissues to
individuals. The significance of this proposal is substantial with broad impact for researchers increasingly using
these imaging and genomic data, such as large-scale consortia generating spatial atlases across multiple
samples, but also the proposed methods will be relevant to a wide variety of scientific disciplines that leverage
high-dimensional data in a spatial context, such as environmental and mobile health. The project builds on my
past experience in developing computational methods and open-source software for scalable clustering and
identifying differences in gene expression at the single-cell level. The creation of well-documented, open-source
software expands the impact of this work to other researchers aiming to understand the spatial landscape of
gene expression in a variety of disease settings.
项目概要/摘要
了解组织中基因表达的空间景观是人类健康的一个基本问题
应用范围从识别细胞类型的空间组织到失调。
与疾病相关的空间依赖性基因表达。
空间分辨转录组学(SRT)提供了大量数据来研究这些问题。此外,
SRT 与长读长 RNA 测序技术的进步相结合,可实现诸如识别等应用
健康和疾病状态下的空间依赖性剪接变异和等位基因特异性,例如癌症或
最近的 SRT 研究正在生成多个样本(不同样本)的数据集。
供体或邻近的组织切片),但研究人员独立分析样本,因为缺乏
相比之下,当样本被一起分析时,
统计能力得到提高,可以更准确和精确地检测差异。
分析具有多个样本的 SRT 数据是一个重大的知识差距,限制了改进模型的能力
可作为预防和治疗目标的疾病的分子原因和后果。
我的研究项目为生物医学数据开发可扩展的计算方法和开源软件
分析,特别是单细胞和空间转录组数据,从而提高对
在这里,我们的目标是专注于开发可扩展的计算方法和
软件用于处理来自空间和长读技术的数据,具有多个样本和实验条件
准确地 (1) 预测多个样本中组织的空间域,(2) 识别空间基因的差异
跨实验条件或每组有多个样本的生物组的表达,以及 (3)
识别跨空间域或实验条件的差异剪接变异。
拟议工作的基本原理是开发的计算工具将带来实质性进展
在我们对从细胞到组织的不同尺度上基因表达的空间景观的理解中
该提案的意义重大,对越来越多使用的研究人员产生广泛影响。
这些成像和基因组数据,例如跨多个领域生成空间地图集的大规模联盟
样本,而且所提出的方法将与利用
空间背景下的高维数据,例如环境和移动健康该项目建立在我的基础上。
过去在可扩展集群的计算方法和开源软件方面的开发经验
识别单细胞水平上基因表达的差异 创建有据可查的开源文件。
软件将这项工作的影响扩展到其他旨在了解空间景观的研究人员
各种疾病环境中的基因表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Carinne Hicks其他文献
Stephanie Carinne Hicks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Carinne Hicks', 18)}}的其他基金
Profiling the human dentate gyrus across the lifespan with spatially-resolved transcriptomics
利用空间分辨转录组学分析人类齿状回的整个生命周期
- 批准号:
10724575 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10573242 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10007230 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10359095 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
- 批准号:
10580294 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Cell-of-Origin Footprints of Passenger Mutations in Human Lung Cancer
人类肺癌中乘客突变的细胞起源足迹
- 批准号:
10871512 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Improving Genetic Diagnosis for African Ancestry Populations
改善非洲血统人群的基因诊断
- 批准号:
10736833 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
High Throughput Clonal Analyses of Gliogenesis in Neocortical and Paleocortical areas of the Mouse Brain
小鼠大脑新皮质和古皮质区域胶质生成的高通量克隆分析
- 批准号:
10536298 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别:
Neurogenic potential of murine Müller glia following retinal injury and conditional inactivation of p27Kip1
视网膜损伤和 p27Kip1 条件失活后小鼠 Müller 胶质细胞的神经源性潜力
- 批准号:
10354817 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别: