AI-powered cross-level cross-species omics data integration to elucidate mechanisms of EL
人工智能驱动的跨级别跨物种组学数据集成阐明 EL 机制
基本信息
- 批准号:10729946
- 负责人:
- 金额:$ 45.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAgingAlgorithmsAlzheimer&aposs DiseaseBindingBiologicalBiological MarkersBiological ModelsBiologyCaenorhabditis elegansChemicalsCollaborationsDNADataData AnalysesData ReportingData SetDimensionsDiseaseDrug ModelingsDrug usageFoundationsGeneticGenomicsGenotypeHealthHumanIndividualKnowledgeLaboratoriesLearningLongevityMachine LearningMathematicsMethodologyMethodsModelingMolecularMolecular TargetMultiomic DataNaturePathway interactionsPerformancePharmacologic SubstancePharmacologyPhasePhenotypePhysiologicalProteinsProteomicsRNAReproducibilityResourcesSystemWorkbiological systemsbiomarker identificationcancer genomicsdata harmonizationdata integrationdata miningdata modelingdata resourcedeep learningdiverse datadrug discoverydruggable targetepigenomicsfeature selectiongenetic informationgenome-widegenomic dataheterogenous datahigh dimensionalityhigh throughput technologyimprovedin vivo Modelinnovationlearning strategymachine learning algorithmmachine learning modelmetabolomicsmodel organismmouse modelmultilevel analysismultimodalitymultiple omicsnetwork modelsnew therapeutic targetnovelnovel markerpharmacologicphenomicspredictive modelingscreeningsuccesstargeted agenttraittranscriptomicstransfer learningtransmission process
项目摘要
Abstract
It is a formidable task to identify the molecular causes of complicated traits such as exceptional longevity (EL).
The majority of machine learning algorithms generate mathematical correlations between genotypes and
phenotypes, but may fail to infer physiologically significant causes. A mechanistic understanding of how
individual molecular components work together in a system and how the system is affected and adapted to the
molecular change requires knowledge of molecular interactions across all biological levels, from DNAs to
RNAs to proteins to metabolites to organismal phenotypes. By integrating multi-omics data, recent approaches
in multi-modal machine learning and multi-layer network model promise to address this deficiency. However,
existing machine learning approaches are hampered by high-dimensionality, non-uniformity, numerous
confounders, and biological differences in multi-omics data across data resources, data domains, and species
as well as lack of interpretability due to the black-box nature of machine learning models. We will develop a
transformative deep learning framework to address challenges for multi-omics data integration and predictive
modeling of causal genotype-EL associations. This project is established on our substantial preliminary results,
successes in systems pharmacology for Alzheimer's disease drug discovery and using C. elegans as disease
and aging models, and close collaborations between experimental and computational laboratories. We shall
overcome several obstacles in order to discover the molecular mechanisms of EL. We will develop and
validate novel algorithms to 1) harmonize non-uniform data sets by removing environmental and biological
confounding factors (e.g., age, species, etc.) and technical biases (e.g., batch effect), 2) explicitly model the
biological information flow from DNAs to RNAs to proteins to metabolites to organismal phenotypes, and 3)
determine causal genetic factors and molecular interactions underlying EL. Specifically, we will: (1) develop
MuLGIT, a causal deep learning-powered cross-layer multi-omics harmonization and integration framework
that follows the central dogma of biology for deciphering the molecular interplays underlying EL; (2) develop a
transfer learning method PATH-AE for cross-species omics data integration and modeling for elucidating
evolutionarily conserved and species-specific molecular determinants of EL; (3) identify molecular targets and
pharmaceutical agents of EL by merging new methodologies for multi-omics data integration with state-of-the-
art methods for chemical genomics and perturbation genomics; and (4) experimentally validate computational
predictions using C. elegans models. Completion of this project will allow us to identify novel biomarkers,
druggable targets, and pharmacological agents associated with remarkable lifespan (EL).
抽象的
确定超长寿命(EL)等复杂性状的分子原因是一项艰巨的任务。
大多数机器学习算法生成基因型和基因型之间的数学相关性
表型,但可能无法推断出生理上重要的原因。机械地理解如何
单个分子成分在系统中协同工作,以及系统如何受到影响和适应
分子变化需要了解所有生物水平上的分子相互作用,从 DNA 到
RNA、蛋白质、代谢物、生物体表型。通过整合多组学数据,最新的方法
多模态机器学习和多层网络模型有望解决这一缺陷。然而,
现有的机器学习方法受到高维性、非均匀性、数量众多的阻碍
跨数据资源、数据域和物种的多组学数据中的混杂因素和生物学差异
以及由于机器学习模型的黑盒性质而缺乏可解释性。我们将开发一个
变革性的深度学习框架,以应对多组学数据集成和预测的挑战
因果基因型-EL 关联的建模。这个项目是建立在我们实质性的初步成果的基础上的,
在阿尔茨海默病药物发现和使用秀丽隐杆线虫作为疾病的系统药理学方面取得成功
和老化模型,以及实验和计算实验室之间的密切合作。我们将
为了发现 EL 的分子机制,克服了一些障碍。我们将开发和
验证新算法以 1)通过消除环境和生物来协调非均匀数据集
混杂因素(例如年龄、物种等)和技术偏差(例如批次效应),2)明确建模
生物信息从 DNA 流向 RNA,再到蛋白质,再到代谢物,再到生物体表型,3)
确定 EL 的致病遗传因素和分子相互作用。具体来说,我们将:(一)开发
MuLGIT,因果深度学习驱动的跨层多组学协调和集成框架
遵循生物学的中心法则来破译 EL 背后的分子相互作用; (2) 开发一个
用于跨物种组学数据集成和建模的迁移学习方法 PATH-AE
EL 的进化保守性和物种特异性分子决定因素; (3) 识别分子靶标
通过将多组学数据集成的新方法与最新技术相结合,开发 EL 药物制剂
化学基因组学和微扰基因组学的艺术方法; (4) 实验验证计算
使用秀丽隐杆线虫模型进行预测。该项目的完成将使我们能够识别新的生物标志物,
可药物靶标以及与显着寿命(EL)相关的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia Melendez其他文献
Alicia Melendez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia Melendez', 18)}}的其他基金
Role of autophagy and retromer genes in GLP-1/Notch signaling
自噬和逆转录酶基因在 GLP-1/Notch 信号传导中的作用
- 批准号:
9171257 - 财政年份:2012
- 资助金额:
$ 45.85万 - 项目类别:
Role of autophagy and retromer genes in GLP-1/Notch signaling
自噬和逆转录酶基因在 GLP-1/Notch 信号传导中的作用
- 批准号:
8367474 - 财政年份:2012
- 资助金额:
$ 45.85万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 45.85万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 45.85万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 45.85万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 45.85万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 45.85万 - 项目类别: