Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
基本信息
- 批准号:10773360
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbbreviationsAddressAdoptionCanis familiarisClinicClinicalCollectionData CollectionDependenceDevicesDiameterDoseElectronicsFilmFundingGenerationsHybridsImageImaging DeviceImprove AccessIndustry StandardIntensity-Modulated RadiotherapyInternationalKentuckyLightLinear Accelerator Radiotherapy SystemsMalignant NeoplasmsMarketingMeasurementMeasuresMedicalMedical centerMedicineModernizationMonitorOpticsOutputPatientsPeer ReviewPerformancePhasePhysicsPositioning AttributeProcessProtocols documentationPublic HealthQualifyingQuality ControlRadiationRadiation therapyRadiosurgeryResource-limited settingRiskRuralSafetyServicesSideSmall Business Innovation Research GrantSurfaceSystemTechniquesTechnologyTestingTimeTissuesTravelUniversitiesWorkX-Ray Computed Tomographyautomated analysiscommercializationcostdata acquisitiondesigndosimetryhealth care availabilityimage guidedimprovedimproved outcomeinnovationnon-compliancenoveloptical polarizationpeer supportprototypepublic health relevancequality assurancerural arearural settingsensorsuccesstransmission processtreatment strategyunderserved area
项目摘要
Executive Summary
Radiation Therapy is an effective component of the treatment strategy for patients suffering from
cancer. Advanced techniques such as intensity modulated radiation therapy (IMRT), image-guided RT (IGRT),
stereotactic body RT (SBRT) and stereotactic radiosurgery (SRS) improve outcomes and are delivered using
medical linear accelerators (i.e., ‘linacs”). SBRT is especially appealing given that the precise treatments are
delivered in 1-5 daily treatment fractions, as opposed to the 20-40 fractions required for conventional
techniques. Providing SBRT in rural settings can improve access by administering these precise, abbreviated
treatments to patients who have difficulty traveling to large, regional medical centers. Further, adoption of
automated techniques for quality control and enhanced tele-dosimetry can support peer review, improve
quality, reduce dependence on (local) expertise and reduce operating costs.
The quality assurance (QA) that medical physicists provide is critical for safe treatments, yet there is a
shortage of qualified medical physicists (QMPs), both in the US and globally. At the same time, more centers
are introducing modern techniques that are more precise but intrinsically have more risk, due the high doses
and geometric precision required. There is widespread noncompliance with industry standard QA protocols in
the US and internationally. Existing QA devices have not evolved sufficiently to provide the precision, versatility
and efficiency that is needed for high precision RT. Given these exacerbated safety risks, the market needs a
paradigm shift in how QA is performed in modern RT.
Wild Dog Physics (WDP) proposes to design and test a new-generation QA device that addresses these
unmet medical needs. When complete, it will be more precise, efficient, and comprehensive than any QA
solution currently on the market. The proposed project seeks to develop a clinical prototype to be tested in the
Radiation Therapy clinic at the University of Kentucky, as well as regional partner organizations located in
rural, underserved areas. The prototype will be developed using the following milestones: Design and build i)
a novel, a small-form-factor optical tunnel (SFFOT), ii) a laminated side wall with a scintillating phosphor
screen and ‘switchable film’ outer layer to facilitate ambient light rejection and iii), a hybrid beam quality /
compact CT phantom. The project will culminate with the construction of an integrated prototype that will be
tested for technical and clinical performance.
Towards this end, the specific aims of this project are:
Specific Aim 1: Build and test the 3 primary subcomponents of an integrated device; a) a SFFOT that can
collect an image(s) of the entire useful interior surface, transmit the image(s) to an electronic camera sensor
through a small form-factor (< 5 cm diameter) passive optical chain; b) a laminated side wall consisting of an
outer, electronically polarizing optical layer, and an inner radio-luminescent layer, and c) a hybrid ‘dose
phantom’ to be integrated onto one side of the device which will serve as a tissue-equivalent phantom so that
beam quality metrics can be monitored and to host CT image quality test objects.
Specific Aim 2: Construct and test a clinical prototype; The system’s ability to monitor machine performance in
a clinical setting will be validated. Sensitivity to detecting changes in relative and absolute radiation output, as
well as field edge positioning will be measured, with success criteria defined as 0.5% and 0.5 mm. Data
acquisition time for monthly QA tests will be measured and success defined as less than 30 minutes.
The consolidation of multiple device functions combined with the ease of use and measurement
precision enable a paradigm shift in how medical physics services and quality assurance are rendered. Sparse
but efficient daily QA protocols will be replaced with comprehensive data collection and automated analysis, at
no additional cost in time or staffing. High precision radiation treatments can be safely brought to rural and
underserved areas, with safety, efficiency and precision improved in any center using the innovation.
To date, we have established the feasibility of constructing a single device that can acquire
comprehensive QA metrics in less than 60 minutes. Presently, all subsystems have been tested and found to
perform as required. A three-dimensional prototype has been built and is being validated by our clinical
partner at the UK Radiation Medicine department. WDP is in the process of seeking SBIR Phase 2 funding to
further develop the technology to the point of commercialization.
执行摘要
放射治疗是患有以下疾病的患者治疗策略的有效组成部分
癌症的先进技术,如调强放射治疗 (IMRT)、图像引导放射治疗 (IGRT)、
立体定向全身放疗 (SBRT) 和立体定向放射外科 (SRS) 可改善结果,并通过使用
医用直线加速器(即“直线加速器”)因其精确的治疗效果而特别引人注目。
每日治疗分次为 1-5 次,而传统治疗则需要 20-40 次
在农村地区提供 SBRT 可以通过管理这些精确、简短的技术来改善可及性。
为难以前往大型地区医疗中心的患者提供治疗。
质量控制和增强的远程剂量测定的自动化技术可以支持同行评审、改进
质量,减少对(当地)专业知识的依赖并降低运营成本。
医学物理学家提供的质量保证 (QA) 对于安全治疗至关重要,但存在一个问题
美国和全球都缺乏合格的医学物理学家(QMP),同时需要更多的中心。
正在引入更精确的现代技术,但由于高剂量,本质上风险更大
和几何精度要求的情况普遍存在不符合行业标准质量保证协议的情况。
美国和国际上现有的 QA 设备尚未发展到足以提供精确性和多功能性。
鉴于这些加剧的安全风险,市场需要高精度 RT 所需的效率和效率。
现代 RT 中 QA 执行方式的范式转变。
Wild Dog Chemistry (WDP) 提议设计和测试新一代 QA 设备来解决这些问题
未满足的医疗需求完成后,将比任何 QA 更加精确、高效和全面。
目前市场上的解决方案旨在开发一个临床原型来进行测试。
肯塔基大学的放射治疗诊所以及位于
该原型将按照以下里程碑进行开发: 设计和建造 i)
新颖的小型光学隧道 (SFFOT),ii) 带有闪烁荧光粉的层压侧壁
屏幕和“可切换薄膜”外层,以促进环境光抑制,以及 iii) 混合光束质量/
该项目将最终建造一个集成原型。
进行了技术和临床性能测试。
为此,该项目的具体目标是:
具体目标 1:构建并测试集成设备的 3 个主要子组件 a) 能够实现的 SFFOT;
收集整个有用内表面的图像,将图像传输到电子相机传感器
通过小形状系数(< 5 cm 直径)无源光链 b) 由以下部分组成的层压侧壁;
外部电子偏振光学层和内部放射发光层,以及 c) 混合剂量
体模”将集成到设备的一侧,作为组织等效体模,以便
可以监控光束质量指标并托管 CT 图像质量测试对象。
具体目标 2:构建并测试临床原型;该系统监控机器性能的能力
将验证检测相对和绝对辐射输出变化的灵敏度。
将测量场边缘定位,成功标准定义为 0.5% 和 0.5 毫米数据。
将测量每月 QA 测试的获取时间,并将成功定义为少于 30 分钟。
多种设备功能的整合,易于使用和测量
精度使医学物理服务和质量保证的提供方式发生了范式转变。
但高效的日常质量保证协议将被全面的数据收集和自动分析所取代,
无需额外的时间或人员成本即可将高精度放射治疗安全地带到农村和地区。
服务不足的地区,使用该创新的任何中心的安全性、效率和精确度都得到了提高。
迄今为止,我们已经建立了构建可以获取数据的单一设备的可行性
不到 60 分钟即可获得全面的 QA 指标。
已构建了三维原型并正在通过我们的临床验证。
英国放射医学部门的合作伙伴正在寻求 SBIR 第二阶段资金。
进一步发展该技术直至商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janelle Arlene Molloy其他文献
Janelle Arlene Molloy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janelle Arlene Molloy', 18)}}的其他基金
Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
- 批准号:
10256613 - 财政年份:2021
- 资助金额:
$ 5.5万 - 项目类别:
相似海外基金
Involvement of microglial α7AChR in binge alcohol modulation of gut dysbiosis
小胶质细胞α7AChR参与酗酒调节肠道菌群失调
- 批准号:
10705750 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Control of ovarian vascular remodeling by CCAAT/enhancer binding proteins alpha and beta
CCAAT/增强子结合蛋白α和β控制卵巢血管重塑
- 批准号:
10684822 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Involvement of microglial α7AChR in binge alcohol modulation of gut dysbiosis
小胶质细胞α7AChR参与酗酒调节肠道菌群失调
- 批准号:
10527744 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Control of ovarian vascular remodeling by CCAAT/enhancer binding proteins alpha and beta
CCAAT/增强子结合蛋白α和β控制卵巢血管重塑
- 批准号:
10684822 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Ultrasound-guided photoacoustic imaging and tracking of stem cells in the spinal cord
超声引导光声成像和脊髓干细胞追踪
- 批准号:
9978212 - 财政年份:2020
- 资助金额:
$ 5.5万 - 项目类别: