ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
基本信息
- 批准号:10717312
- 负责人:
- 金额:$ 71.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAncillary StudyArtificial IntelligenceCardiologyCardiovascular DiseasesCardiovascular systemCause of DeathChicagoChronicClassificationClinical DataDataData SetDetectionDiagnosisEFRACEarly DiagnosisElderlyElectrocardiogramElectronic Health RecordEnrollmentEpidemiologyEtiologyFundingGoalsHealth SciencesHealthcare SystemsHeart failureIndividualInterventionKnowledgeLeft Ventricular Ejection FractionMachine LearningMethodsModalityModelingModificationMorbidity - disease rateMultiomic DataNational Heart, Lung, and Blood InstituteOlder PopulationParticipantPatientsPhenotypePreventivePrognosisQuality of lifeResearchRiskRisk ReductionSiteStandardizationSyndromeTennesseeTestingTrainingTreatment FailureUnited StatesUnited States National Institutes of HealthUniversitiesValidationWomanWorkadjudicationartificial intelligence methodburden of illnesscohortcostdeep learningdeep learning modeldiagnostic criteriaelectronic health dataforesthands-on learningimprovedlearning strategymodel buildingmortalitymultiple omicsnovelpatient populationpredictive modelingpreservationrepositoryrisk predictionrisk prediction modelscreeningstandard of caretargeted treatmenttherapeutic developmenttooltransfer learningtreatment optimization
项目摘要
Project Summary/Abstract
More than 6 million adults are suffering from heart failure in the United States. Heart failure is associated with
high mortality rate while also reducing the quality of life. Early recognition of heart failure and timely
interventions can help reducing the disease burden to individuals and to overall healthcare system. However,
more than half of HF patients are HF with preserved left ventricular ejection fraction (HFpEF) while the majority
of existing HF treatments are for HF with reduced left ventricular ejection fraction (HFrEF). This is because
HFpEF is a heterogenous syndrome, and its etiology is not well understood. A new NIH-funded initiative,
HeartShare Study, aims to fill this knowledge gap to identify subtypes of HFpEF potentially with different
treatment options using deep phenotyping, multi-omics, and machine learning approach. However, there is still
a need for low cost and accessible tools 1) for screening large patient populations for HFpEF risk to support
preventive risk modification strategies and 2) for identifying HFpEF subtypes to assist targeted therapeutics.
The goal of this ancillary study is to utilize low cost and accessible electrocardiogram (ECG) data via artificial
intelligence (AI) for prediction of incident HFpEF risk and subtyping of prevalent HFpEF.
We and others have shown that AI applied to ECG data can discriminate patients with reduced and preserved
EF with high accuracy [1-5]. We recently developed and validated an ECG-based 10-year HF risk prediction
model using artificial intelligence (AI) [6, 7]. These findings led us to hypothesize that AI applied to ECG data
can predict HFpEF risk and identify specific HFpEF subtypes. The goal of this ancillary study is to test our
hypothesis by leveraging retrospective ECG and clinical data from: a) NIH-funded studies with gold standard
ascertainment of HFpEFand b) real-world ECG and clinical data from three large healthcare systems (WFU-
Wake Forest University, Winston-Salem, NC; UT-University of Tennessee Health Science Center, Memphis,
TN; and LUC-Loyola University Chicago) and c) data from the HeartShare Study. Building on our expertise, we
propose developing ECG-based risk prediction and classification of HFpEF subtypes by completing three
Aims:
Aim 1. Develop an incident HFpEF prediction model using data from NIH-funded studies: We will utilize
high quality and accurate data from NIH-funded studies to develop AI model predicting risk for incident HFpEF.
Aim 2. Develop an incident HFpEF prediction model using real-world Electronic Health Records (EHR)-
derived data: We will first utilize very larger and diverse EHR-based real world data to develop incident
HFpEF risk prediction model. We will then harmonize it with the NIH-data based model via transfer learning.
Aim 3. Develop, test and implement ECG-based HFpEF phenotyping. This aim will utilize data from
prevalent HFpEF patients to classify HFpEF subtypes.
项目摘要/摘要
在美国,超过600万成年人患有心力衰竭。心力衰竭与
高死亡率,同时也降低了生活质量。早期意识到心力衰竭和及时
干预措施可以帮助减轻个人和整体医疗保健系统的负担。然而,
超过一半的HF患者是HF,保留了左心室射血分数(HFPEF),而大多数
现有的HF治疗是针对左心室射血分数(HFREF)减少的HF。这是因为
HFPEF是一种异质综合征,其病因尚未得到很好的理解。一项新的NIH资助计划,
心脏夏星研究,旨在填补这一知识差距,以识别HFPEF的亚型
使用深层表型,多词和机器学习方法的治疗选择。但是,仍然有
需要低成本和可访问工具1)筛查大量患者人群以获得HFPEF风险以支持
预防风险修改策略和2)识别HFPEF亚型以帮助有针对性的治疗剂。
这项辅助研究的目的是通过人工使用低成本和无障碍心电图(ECG)数据
智力(AI)预测事件HFPEF风险和普遍HFPEF的亚型。
我们和其他人表明,应用于ECG数据的AI可以区分减少和保存的患者
EF精度高[1-5]。我们最近开发并验证了基于ECG的10年HF风险预测
使用人工智能(AI)[6,7]模型。这些发现使我们假设AI应用于ECG数据
可以预测HFPEF风险并确定特定的HFPEF亚型。这项辅助研究的目的是测试我们
通过利用回顾性心电图和临床数据的假设:a)具有黄金标准的NIH资助的研究
hfpefand的确定b)来自三个大型医疗系统的现实世界心电图和临床数据(WFU-
北卡罗来纳州温斯顿·塞勒姆的韦克森林大学;孟菲斯田纳西州健康科学中心的UT-大学,
TN;芝加哥卢克洛洛伊拉大学(Luc-Loyola University)和c)来自心脏研究的数据。在我们的专业知识的基础上,我们
通过完成三个
目标:
目标1。使用来自NIH资助的研究的数据开发事件HFPEF预测模型:我们将利用
来自NIH资助的研究的高质量和准确数据,以开发AI模型,以预测事件HFPEF的风险。
目标2。使用现实世界电子健康记录(EHR)开发事件HFPEF预测模型 -
派生数据:我们将首先利用非常大的基于EHR的现实世界数据来开发事件
HFPEF风险预测模型。然后,我们将通过转移学习将其与基于NIH-DATA的模型协调。
目标3。开发,测试和实施基于ECG的HFPEF表型。这个目标将利用来自
普遍的HFPEF患者对HFPEF亚型进行分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oguz Akbilgic其他文献
Oguz Akbilgic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oguz Akbilgic', 18)}}的其他基金
Deep learning of awake and sleep electrocardiography to identify atrial fibrillation risk in sleep apnea
深度学习清醒和睡眠心电图来识别睡眠呼吸暂停中的房颤风险
- 批准号:
10579141 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 71.14万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10610470 - 财政年份:2022
- 资助金额:
$ 71.14万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of adipose tissue in adaptive responses to exercise
脂肪组织在运动适应性反应中的作用
- 批准号:
10569307 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Stroke Trials Network of Columbia and Cornell
哥伦比亚大学和康奈尔大学中风试验网络
- 批准号:
10767024 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
1/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
1/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711811 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
4/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
4/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711018 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别: