Mitochondrial Calcium Uniporter in Signaling and Dynamics
线粒体钙单向转运蛋白在信号传导和动力学中的作用
基本信息
- 批准号:10720242
- 负责人:
- 金额:$ 42.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteBiological AssayCalciumCalcium SignalingCell DeathCell LineCell physiologyCellsChronicComplexCrista ampullarisCytoplasmDataDependenceDiseaseEndoplasmic ReticulumEnergy MetabolismEnvironmentFingerprintFunctional ImagingGatekeepingGeneticGenetic DiseasesGenetic ModelsGlutathione DisulfideHeterogeneityHomeostasisHuman GeneticsHydrogen PeroxideIndividualInner mitochondrial membraneIschemiaLinkLiverMalignant NeoplasmsMediatingMembrane PotentialsMetabolismMitochondriaMitochondrial MatrixModificationMorphologyMusMuscleMutationOrganOrganellesOxidation-ReductionPathogenesisPathway interactionsPatientsPatternPerinatal mortality demographicsPermeabilityProteinsReactive Oxygen SpeciesReperfusion TherapyResolutionRestRoleShapesSignal TransductionStructureTestingTissuescalcium uniportercell injurydimerdriving forceextracellularhuman diseaseimaging approachmitochondrial membranemouse geneticsnovelscaffoldspatiotemporalstructural imaginguptake
项目摘要
Mitochondrial Ca2+ uptake controls many cell functions, including energy metabolism, signaling and dynamics. Mitochondrial Ca2+ accumulation is supported by the robust driving force of the highly negative, inner mitochondrial membrane potential, but is activated only during Ca2+ signals, when cytoplasmic [Ca2+] is elevated. Ca2+ signals are propagated to the mitochondrial matrix through a channel, the calcium uniporter (mtCU), comprised of pore-forming MCU, scaffold EMRE, and Ca2+-sensing regulatory dimers of MICU1 with itself, MICU2 or MICU3. MICU1 deletion results in a permanently open mtCU, whereas MICU2 loss increases and MICU3 loss decreases the Ca2+ sensitivity of the mtCU gating. MICU1 deletion has been shown by us and others to cause perinatal death in mouse and both MICU1 and MICU2 mutations have been linked to human diseases. Evidence has also started to accumulate in support of MICU1 decrease in common disorders like ischemia-reperfusion and cancer. However, despite the MICUs broad disease relevance, their contribution to the organization of calcium signaling and organelle, cell and tissue structure and functions remains undetermined. Here we present preliminary data indicating cell-to-cell and intracellular heterogeneity in the MICUs, which might be relevant for specialization of cells in complex organs. MICU1 loss was shown to be followed by secondary mtCU composition changes, which might be either adaptive or maladaptive, however the temporal ordering of these changes and others beyond the mtCU itself are not known. Whereas MICU1 loss-induced cell injury has been attributed to mitochondrial Ca2+ overload, our preliminary findings point to the importance of other contributors, namely mitochondrial reactive oxygen species and structural alterations. Thus, delineating the mechanisms by which MICUs contribute to the inter-and intracellular organization of Ca2+ signaling and the stability of mitochondrial structure and function are of vast significance. Here we pose the hypothesis that MICUs are important for individual cells’ Ca2+ signal fingerprints, for redox homeostasis and for fusion-fission and cristae dynamics of the mitochondria. To test these ideas, we have developed novel assays and assembled an array of cell and mouse genetic models. Our specific aims are to determine (1) if MICU1 gating of the mtCU creates intracellular heterogeneity in Ca2+ signaling; (2) if the control of mtCU gating by MICUs is relevant for mitochondrial redox homeostasis; (3) if MICU1, MICU2 and MICU3 contribute to the control of mitochondrial fusion-fission dynamics and cristae shaping and these contributions depend on the gating of the mtCU. Completion of these aims will provide clues to the mechanisms by which MICUs support mitochondrial membrane dynamics and signaling and to the pathogenesis initiated by perturbing mtCU structure and function.
线粒体Ca2+摄取控制许多细胞功能,包括能量代谢,信号传导和动力学。线粒体Ca2+积累受到高度负,内部线粒体膜电位的稳健驱动力的支持,但仅在胞质[Ca2+]升高时仅在Ca2+信号期间激活。 Ca2+信号通过通道传播到线粒体基质,钙统一(MTCU),由孔形成MCU,脚手架EMRE和Ca2+ sensing-sensing调节二聚体,其本身,MICU2或MICU3。 MICU1删除会导致永久开放的mTCU,而MICU2损耗增加,MICU3损耗降低了mTCU门控的Ca2+灵敏度。我们和其他人已经证明了MICU1缺失在小鼠中导致围产期死亡,MICU1和MICU2突变都与人类疾病有关。证据也开始积累以支持MICU1降低常见疾病,例如缺血 - 再灌注和癌症。然而,尽管米克斯疾病具有广泛的相关性,但它们对钙信号传导和细胞器,细胞和组织结构以及功能的贡献仍未确定。在这里,我们介绍了指示MICUS中细胞到细胞和细胞内异质性的初步数据,这可能与复杂器官中细胞的专业化有关。 MICU1丢失被证明是次级MTCU组成的变化,可能是适应性或适应不良的,但是这些变化的临时排序以及MTCU本身以外的其他变化的临时排序。尽管MICU1损耗诱导的细胞损伤已归因于线粒体Ca2+过载,但我们的初步发现表明其他贡献者的重要性,即线粒体反应性氧和结构改变。这是描述MICUS对CA2+信号传导的细胞间和细胞内组织以及线粒体结构和功能的稳定性的机制的重要意义。在这里,我们提出了一个假设,即MICUS对于单个细胞的Ca2+信号指纹,氧化还原稳态以及线粒体的融合膜和CRISTAE动力学很重要。为了测试这些想法,我们开发了新颖的测定法,并组装了一系列细胞和小鼠遗传模型。我们的具体目的是确定(1)MTCU的MICU1门控在Ca2+信号传导中产生细胞内异质性; (2)如果MICUS对MTCU进行控制与线粒体氧化还原稳态有关; (3)如果MICU1,MICU2和MICU3有助于控制线粒体融合 - 裂变动力学和CRISTAE成型,并且这些贡献取决于MTCU的门控。这些目标的完成将为MICUS支持线粒体膜动力学和信号传导以及通过扰动mTCU结构和功能引发的发病机理提供线索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gyorgy Hajnoczky其他文献
Gyorgy Hajnoczky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gyorgy Hajnoczky', 18)}}的其他基金
Developing tools for calcium imaging in ITPR2-linked liver pathogenesis
开发 ITPR2 相关肝脏发病机制的钙成像工具
- 批准号:
10727998 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
(PQ5) Relevance of VDAC2 heterogeneity for hepatic tumor growth and targeting
(PQ5) VDAC2 异质性与肝肿瘤生长和靶向的相关性
- 批准号:
10395472 - 财政年份:2018
- 资助金额:
$ 42.18万 - 项目类别:
(PQ5) Relevance of VDAC2 heterogeneity for hepatic tumor growth and targeting
(PQ5) VDAC2 异质性与肝肿瘤生长和靶向的相关性
- 批准号:
9924258 - 财政年份:2018
- 资助金额:
$ 42.18万 - 项目类别:
Molecular Mechanisms of Mitochondrial Ca2+ Transport
线粒体 Ca2 运输的分子机制
- 批准号:
9000157 - 财政年份:2015
- 资助金额:
$ 42.18万 - 项目类别:
Molecular Mechanisms of Mitochondrial Ca2+ Transport
线粒体 Ca2 运输的分子机制
- 批准号:
9264336 - 财政年份:2015
- 资助金额:
$ 42.18万 - 项目类别:
Redox Regulation of Intracellular Calcium Signaling
细胞内钙信号传导的氧化还原调节
- 批准号:
9022475 - 财政年份:2015
- 资助金额:
$ 42.18万 - 项目类别:
Redox Regulation of Intracellular Calcium Signaling
细胞内钙信号传导的氧化还原调节
- 批准号:
8905057 - 财政年份:2015
- 资助金额:
$ 42.18万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
- 批准号:
10759735 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Vascular injury and repair predict divergent late onset cardiovascular morbidities after chlorine and sulfur mustard exposure
血管损伤和修复预测氯和硫芥暴露后不同的迟发性心血管疾病
- 批准号:
10712025 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别: