Ryanodine Receptors as Therapeutic Targets to Prevent Doxorubicin-Induced Lymphatic Dysfunction
瑞尼定受体作为预防阿霉素引起的淋巴功能障碍的治疗靶点
基本信息
- 批准号:10712392
- 负责人:
- 金额:$ 35.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAttenuatedBreast Cancer PatientBreast Cancer therapyCalcium ChannelCancer PatientCell DeathCell Death InductionChronicComplicationDevelopmentDoxorubicinDrug usageEnzymesGenerationsHealthcare SystemsHistologicImmobilizationImpairmentIncidenceInjuryLigationLipid PeroxidationLiquid substanceLymphLymphaticLymphatic functionLymphedemaMalignant Female Reproductive System NeoplasmMalignant NeoplasmsMediatingMesenteryMitochondriaModelingMonitorMorphologyMuscle CellsOperative Surgical ProceduresPathway interactionsPatientsPerfusionPeriodicityPersonsPharmaceutical PreparationsPre-Clinical ModelProteinsRadiationRadiation Dose UnitRattusReceptor ActivationResearchRiskRoleRyR1RyR2RyR3Ryanodine Receptor Calcium Release ChannelSOD2 geneSarcoplasmic ReticulumSecond Primary CancersSignal TransductionSpeedSulfhydryl CompoundsSuperoxidesSurgical ModelsTechniquesTherapeuticTissuesbreast surgerycancer riskcancer typechemotherapyclinically relevantcopper zinc superoxide dismutasein vivointerstitialknock-downlipidomicslymph flowlymph nodeslymph stasislymphatic circulationlymphatic dysfunctionlymphatic insufficiencylymphatic surgerylymphatic vesselmalignant breast neoplasmnew therapeutic targetnoveloptical imagingoverexpressionoxidationpre-clinicalpreclinical studypreservationpressurepreventreceptorrecurrent infectionresponserisk mitigationsmall hairpin RNAtherapeutic target
项目摘要
PROJECT SUMMARY/ABSTRACT
Lymphedema is a major complication after radiation and/or surgery for breast and gynecological cancers.
Advancements in surgical techniques mitigate the risk, but the incidence of lymphedema is still high, and there
are no approved medications to prevent or treat it. Doxorubicin (DOX) is a central chemotherapy drug for treating
breast and gynecological cancers, but it increases the risk of lymphedema by 3-fold. The mechanism by which
DOX contributes to chronic lymphedema is unknown, but we found that clinically relevant concentrations of DOX
acutely inhibit lymph vessel (LV) contractions and reduce lymph flow by activating ryanodine receptors (RYRs,
intracellular calcium channels) in lymph muscle cells (LMCs), resulting in tonic Ca2+ leak from the sarcoplasmic
reticulum (SR) and lymphostasis. Sustained high levels of cytosolic Ca2+ [Ca2+i] can promote lipid peroxidation
and cell death pathways, and the increase in intraluminal pressure produced by lymphostasis can damage LV
walls and valve leaflets, synergistically causing chronic lymphatic injury. It is unclear whether DOX activates
RYRs through a direct interaction or indirectly by mediating the oxidation of RYRs. Indeed, DOX elevates both
cytosolic and mitochondrial superoxide (O2•-), which could contribute to RYR oxidation (receptor opening) and
subsequent Ca2+ leak. It is also unknown which RYR subtype (RYR1, RYR2, RYR3) is activated by DOX in
LMCs; if known, it could serve as a potential therapeutic target to prevent DOX-induced lymphatic dysfunction.
We propose RYRs are novel therapeutic targets in LMCs to prevent DOX-induced lymphatic dysfunction and the
development of chronic lymphedema. We hypothesize that DOX generates O2•- to acutely oxidize and open
RYRs to increase [Ca2+i] in LMCs, inhibiting LV contractions and inducing lymphostasis and lymphatic injury, and
added surgical insult potentiates this effect. Accordingly, we will use our well-established rat model to evaluate
RYRs as therapeutic targets to prevent DOX-induced lymphatic dysfunction. Three aims will integrate techniques
in preclinical studies to explore this hypothesis and will rely on protein and functional analysis of isolated LVs,
use optical imaging to assess volumetric lymph flow in vivo in response to DOX and RYR blockade, and
investigate the utility of RYR blockers, as a potential therapeutics in a preclinical model of lymphatic
insufficiency. Aim 1 will determine whether DOX-induced RYR activation is mediated by O2•- in LMCs. Aim 2 will
define the role of RYR subtypes in DOX-induced Ca2+ leak in isolated LVs and in lymph flow in vivo. Aim 3 will
investigate the combined impact of DOX ± RYR blocker on lymphatic function, lipid peroxidation, and lymphatic
morphology in a preclinical rat model of lymphatic insufficiency. Thus, we plan to explore RYRs as novel
therapeutic targets to prevent DOX-related lymphedema and evaluate whether RYR blockers can be utilized as
anti-lymphedema agents.
项目概要/摘要
淋巴水肿是乳腺癌和妇科癌症放射和/或手术后的主要并发症。
手术技术的进步降低了风险,但淋巴水肿的发生率仍然很高,并且存在
没有批准的药物可以预防或治疗它。阿霉素 (DOX) 是一种用于治疗的主要化疗药物。
乳腺癌和妇科癌症,但它会使淋巴水肿的风险增加 3 倍。
DOX 是否导致慢性淋巴水肿尚不清楚,但我们发现临床相关的 DOX 浓度
通过激活兰尼碱受体(RYRs,
淋巴肌细胞 (LMC) 中的细胞内钙通道),导致肌浆中的强效 Ca2+ 渗漏
网状组织 (SR) 和淋巴组织持续高水平的胞质 Ca2+ [Ca2+i] 可促进脂质过氧化。
和细胞死亡途径,以及淋巴淤积产生的腔内压力增加会损害左心室
血管壁和瓣叶,协同导致慢性淋巴损伤目前尚不清楚 DOX 是否会激活。
事实上,DOX 通过直接相互作用或通过介导 RYR 氧化间接提高两者。
细胞质和线粒体超氧化物 (O2•-),可能有助于 RYR 氧化(受体开放)和
随后的 Ca2+ 泄漏还不清楚 DOX 激活哪种 RYR 亚型(RYR1、RYR2、RYR3)。
LMCs;如果已知,它可以作为预防 DOX 引起的淋巴功能障碍的潜在治疗靶点。
我们认为 RYR 是 LMC 中的新治疗靶点,可预防 DOX 诱导的淋巴功能障碍和
我们勇敢地面对DOX 产生O2•- 的剧烈氧化和开放。
RYR 增加 LMC 中的 [Ca2+i],抑制左心室收缩并诱导淋巴淤滞和淋巴损伤,以及
增加的手术损伤会增强这种效果,因此,我们将使用我们完善的大鼠模型来评估。
RYR 作为预防 DOX 引起的淋巴功能障碍的治疗靶点将整合技术。
在临床前研究中探索这一假设,并将依赖于分离的 LV 的蛋白质和功能分析,
使用光学成像来评估体内对 DOX 和 RYR 阻断的反应体积淋巴流量,以及
研究 RYR 阻滞剂作为淋巴管临床前模型中潜在治疗方法的效用
目标 1 将确定 LMC 中 DOX 诱导的 RYR 激活是否由 O2•- 介导。
目标 3 将定义 RYR 亚型在 DOX 诱导的离体 LV 中 Ca2+ 渗漏和体内淋巴流动中的作用。
研究 DOX ± RYR 阻滞剂对淋巴功能、脂质过氧化和淋巴管的综合影响
因此,我们计划探索 RYR 作为新型淋巴管功能不全的临床前大鼠模型。
预防 DOX 相关淋巴水肿的治疗靶点并评估 RYR 阻滞剂是否可用作
抗淋巴水肿剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Stolarz其他文献
Amanda Stolarz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Stolarz', 18)}}的其他基金
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10240512 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10667663 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10487486 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10025394 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
R21 MPI microRNA directed therapy for treating early stage pancreatic cancer
R21 MPI microRNA 定向疗法治疗早期胰腺癌
- 批准号:
10577609 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
Determining Sox10-mediated plasticity in irradiated salivary gland cells
确定受辐射唾液腺细胞中 Sox10 介导的可塑性
- 批准号:
10606665 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
- 批准号:
10572572 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别: