Translational Control by Human Pumilio Proteins
人类 Pumilio 蛋白的翻译控制
基本信息
- 批准号:10712307
- 负责人:
- 金额:$ 37.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-18 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingBindingBiochemicalBiological AssayBiological ProcessBiologyCellsChemicalsComplexCytoplasmDataData AnalysesDefectDevelopmentDiseaseEmbryonic DevelopmentEnzymesFractionationFunctional disorderGametogenesisGene ExpressionGene Expression RegulationGenesGeneticGoalsHematopoiesisHumanIn VitroInfertilityIntellectual functioning disabilityKnowledgeLeadLinkMalignant NeoplasmsMapsMeasuresMediatingMediatorMessenger RNANerve DegenerationOutcomePathogenesisPoly(A)-Binding Protein IPoly(A)-Binding ProteinsPolyribosomesPositioning AttributePrevalenceProcessProductionProteinsProteomeRNARNA DecayRNA DegradationRNA SequencesRNA-Binding ProteinsRegulationReporterRepressionResearchResolutionResponse ElementsRibosomesRoleSeizuresSpecific qualifier valueStructureTailTimeTranslation ProcessTranslational RegulationTranslational RepressionTranslationsexperimental studygene repressiongenetic informationhuman diseaseimprovedin vivoinsightmRNA DecaymRNA Transcript DegradationmRNA Translationmitochondrial dysfunctionnervous system disorderneurogenesispolyadenosineposttranscriptionalrecruitribosome profilingstem cell fatesynergismtooltranscription regulatory networktranslation factor
项目摘要
Project Summary
The human RNA-binding proteins, PUM1 and PUM2, are essential for mammalian development and their
dysfunction is linked to multiple human diseases including developmental defects, neurological disorders,
infertility, cancers, and mitochondrial dysfunction. These important functions compel our overall objective to
discover how PUM1&2 control the flow of genetic information from gene to mRNA to protein and to identify the
full repertoire of genes that they regulate. PUM1&2 bind to thousands of mRNAs in human cells by recognizing
an RNA sequence called the Pumilio Response Element (PRE). Previous research showed that PUM1&2
promote degradation of hundreds of these PRE-containing mRNAs by recruiting RNA decay enzymes. It is now
clear, however, that this mechanism represents only one type of PUM-mediated regulatory outcome. Thousands
of mRNAs are bound by PUM1&2 but are not degraded. Therefore, it is now necessary to determine how
PUM1&2 control the fate of all target mRNAs. The resulting data will provide a comprehensive view of their
regulatory roles in biology and pathogenesis.
We propose that human PUM1&2 repress many target mRNAs by inhibiting the process of translation.
This hypothesis is supported by multiple examples of genes that are repressed by PUM1&2 at the level of protein
abundance in the absence of mRNA degradation. The mechanism and prevalence of this translational inhibition
is unknown. In addition, our data indicate that for some genes PUM-mediated translational inhibition can
synergize with RNA degradation to regulate gene expression to a larger extent than either process alone.
RNA molecules form structures that influence their function and fate. While biochemical evidence
indicates that RNA structure can modulate PUM-PRE interactions, its effect in vivo remains unknown. In fact,
there is an overall lack of RNA structural information of mRNAs in human cells that limits our understanding of
how that structure influences gene regulation by RNA-binding proteins like PUM1&2.
The proposed research seeks to determine how PUM1&2 inhibit translation and to identify the
translational regulatory factors that are necessary for PUM1&2 activity. The structure of human mRNAs will be
determined and its effect on PUM-mRNA interactions and regulatory network will be analyzed. By integrating
this new data with existing knowledge of which mRNAs are bound and degraded by PUM1&2, we will develop a
comprehensive understanding of this key genetic regulatory network. Discovery of the full regulatory network of
PUM1&2 will provide new insights into how they control gene expression to regulate normal biological processes.
Moreover, this knowledge will help elucidate how their dysfunction leads to diseases such as neurodegeneration
and cancer.
项目摘要
人类RNA结合蛋白PUM1和PUM2对于哺乳动物发育及其它们都是必不可少的
功能障碍与多种人类疾病有关,包括发育缺陷,神经系统疾病,
不育,癌症和线粒体功能障碍。这些重要功能迫使我们的整体目标
发现PUM1和2如何控制遗传信息从基因到mRNA到蛋白质的流动,并确定
它们调节的基因的完整曲目。 PUM1和2通过识别与人类细胞中数千个mRNA结合
RNA序列称为Pumilio响应元件(PRE)。先前的研究表明PUM1和2
通过募集RNA衰变酶促进数百种此类预含的mRNA的降解。现在
但是,很明显,这种机制仅代表一种类型的PUM介导的调节结果。成千上万
mRNA受PUM1和2的约束,但没有降解。因此,现在有必要确定
PUM1和2控制所有目标mRNA的命运。最终的数据将为他们的全面视图提供
在生物学和发病机理中的调节作用。
我们建议人类PUM1和2通过抑制翻译过程来抑制许多靶向mRNA。
该假设得到了多个在蛋白质水平上受到PUM1和2抑制的基因的例子的支持
在没有mRNA降解的情况下,丰度。这种翻译抑制的机制和流行率
是未知的。此外,我们的数据表明,对于某些基因,PUM介导的翻译抑制可以
与RNA降解协同作用,以比单独的任何一个过程更大程度地调节基因表达。
RNA分子形成影响其功能和命运的结构。而生化证据
表明RNA结构可以调节PUM-PRE相互作用,其体内影响仍然未知。实际上,
总体上缺乏人类细胞中mRNA的RNA结构信息,这限制了我们对
该结构如何通过RNA结合蛋白(如PUM1&2)影响基因调节。
拟议的研究试图确定PUM1和2如何抑制翻译并确定
PUM1和2活动所需的翻译调节因素。人类mRNA的结构将是
将分析确定及其对PUM-MRNA相互作用和调节网络的影响。通过集成
这些具有现有知识的新数据由PUM1和2绑定和降级,我们将开发一个
对这个关键遗传调节网络的全面理解。发现完整的监管网络
PUM1和2将提供有关它们如何控制基因表达以调节正常生物学过程的新见解。
此外,这些知识将有助于阐明其功能障碍如何导致神经变性等疾病
和癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Charles Goldstrohm其他文献
Aaron Charles Goldstrohm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Charles Goldstrohm', 18)}}的其他基金
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10794673 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10418852 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10670824 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
Novel Regulatory Mechanisms of Drosophila Pumilio
果蝇 Pumilio 的新型调控机制
- 批准号:
10312121 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Novel regulatory mechanisms of Drosophila Pumilio and Nanos
果蝇 Pumilio 和 Nanos 的新调控机制
- 批准号:
8738690 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Novel regulatory mechanisms of Drosophila Pumilio and Nanos
果蝇 Pumilio 和 Nanos 的新调控机制
- 批准号:
8476706 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Request to Transfer R01GM105707-03 Novel regulatory mechanisms of Drosophila Pumilio and Nanos
请求转让 R01GM105707-03 果蝇 Pumilio 和 Nanos 的新颖调控机制
- 批准号:
9225476 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Request to Transfer R01GM105707-03 Novel regulatory mechanisms of Drosophila Pumilio and Nanos
请求转让 R01GM105707-03 果蝇 Pumilio 和 Nanos 的新颖调控机制
- 批准号:
9320859 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Mechanisms of 3'UTR Control: Yeast PUF Proteins
3UTR 控制机制:酵母 PUF 蛋白
- 批准号:
6703657 - 财政年份:2003
- 资助金额:
$ 37.97万 - 项目类别:
相似国自然基金
拟南芥中EIN2蛋白调控mRNA翻译并激活乙烯信号的生化机制研究
- 批准号:31870254
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
大米蛋白/阿魏酸的结合机制对复合物的抗氧化及模拟胃肠消化性能的调控研究
- 批准号:31760433
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
拟南芥fimbrin5调控花粉管生长的细胞学基础和生化机制分析
- 批准号:31671390
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
拟南芥微丝解聚因子第三亚家族成员生理生化功能研究
- 批准号:31670180
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
结合神经分类的分子超光谱成像生化指标定量分析研究
- 批准号:61240006
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 37.97万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 37.97万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 37.97万 - 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 37.97万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 37.97万 - 项目类别: