Imaging and multi-omics analyses to identify molecular subtypes of distinct emphysema patterns
影像学和多组学分析可识别不同肺气肿模式的分子亚型
基本信息
- 批准号:10736162
- 负责人:
- 金额:$ 88.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAreaBenchmarkingBiologicalBiological MarkersBiologyBloodBlood specimenChronic Obstructive Pulmonary DiseaseClinicalCluster AnalysisDNA MethylationDataData AnalysesDevelopmentDiagnosisDiseaseEpithelial CellsEquilibriumFibroblastsFundingGene ExpressionGene SilencingGenerationsGenesGraphHealthImageImaging TechniquesIn VitroIndividualInvestigationKnowledgeLengthLobarLungMachine LearningMeasurementMeasuresMethodologyMethodsModalityModelingModernizationMolecularMorbidity - disease rateMultiomic DataNational Heart, Lung, and Blood InstitutePathologicPathway AnalysisPathway interactionsPatternPerformancePhenotypeProcessPrognosisProteomicsPulmonary EmphysemaRadiation exposureReportingReproducibilityResearchResourcesScanningSeveritiesSmokerStructure of parenchyma of lungSubgroupSystems BiologyTestingTissue SampleValidationX-Ray Computed Tomographyairway epitheliumalpha 1-Antitrypsinalpha 1-Antitrypsin Deficiencyalveolar destructionattenuationbiomarker identificationchest computed tomographyclinical predictorscohortdeep neural networkdisorder subtypeearly onsetfeature selectionfunctional disabilitygenetic variantgenome sequencinggraph neural networkimprovedinnovationinsightlung injurylung lobemachine learning algorithmmachine learning methodmachine learning modelmolecular subtypesmortalitymultidisciplinarymultiple omicsnovelnovel therapeuticsoverexpressionperipheral bloodpersonalized medicinepersonalized therapeuticpredictive markerpredictive modelingsupport vector machinetelomeretranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a progressive, debilitating disease in critical need of disease-
modifying treatments. Emphysema, progressive lung destruction commonly encountered in subjects with COPD,
portends a poor prognosis. This project will leverage two large well-phenotyped, NHLBI-funded studies (the
COPDGene and Lung Tissue Research Consortium (LTRC)) and the team’s extensive expertise in modern
imaging techniques, multi-omics data analysis, machine learning approaches, and in vitro functional validation.
The overall objective of this application is to identify novel multi-omics biomarkers and molecular subtypes of
centrilobular, panlobular, and paraseptal emphysema patterns utilizing a systems biology approach to
understand relationships between the multiple omics data types. In Aim 1, we will apply the local histogram (LH)
chest computed tomography (CT) quantification method to generate imaging phenotypes of centrilobular,
panlobular, and paraseptal emphysema in each lung lobe. We will cluster these lobar LH data to identify distinct
groups of subjects with similar LH patterns. We will then test for single-omics associations of the identified
emphysema clusters with genetic variants, DNA methylation marks, telomere length, gene expression, and
proteomics in peripheral blood and lung tissue samples. Aim 2 will develop and evaluate a lung-tissue informed,
blood-based multi-omics machine learning model for reliable clinical prediction of emphysema patterns. Timely
diagnosis calls for a blood-based predictive model as it may identify emphysema in subjects where CT scans
are not clinically indicated. This would also overcome the issues of radiation exposure and false positive findings
associated with CT scans. Aim 3 will discover molecularly-informed emphysema subtypes by applying an
innovative, interpretable, machine learning algorithm that captures directional feature interactions and provides
network representations of the molecular determinants of emphysema subtypes. We will then perform cluster
analysis on the Bivariate Shapley network representations to identify distinct subgroups of subjects based on
their graph similarity. To confirm the critical regulators of the identified pathways, we will conduct targeted gene
silencing and overexpression investigations in airway epithelial cells and lung fibroblasts. Genes will be
prioritized for functional validation utilizing existing biological knowledge and network analyses. Through a
combination of innovative, cutting-edge data generation, analytic approaches, and functional validation, this
project will make a significant contribution by enhancing emphysema phenotyping and multi-omics profiling for
a more robust prediction and a better understanding of disease pathobiology. Such knowledge will pave the way
for the development of much-needed novel and personalized therapeutic strategies.
项目概要/摘要
慢性阻塞性肺疾病(COPD)是一种进行性、使人衰弱的疾病,迫切需要疾病治疗。
修改治疗方法,肺气肿、慢性阻塞性肺病患者常见的进行性肺损伤,
该项目将利用两项由 NHLBI 资助的大型表型研究(
COPDGene 和肺组织研究联盟 (LTRC)) 以及该团队在现代
成像技术、多组学数据分析、机器学习方法和体外功能验证。
该应用的总体目标是识别新型多组学生物标志物和分子亚型
利用系统生物学方法研究小叶中心型、全小叶型和间隔旁型肺气肿模式
了解多种组学数据类型之间的关系在目标 1 中,我们将应用局部直方图 (LH)。
胸部计算机断层扫描(CT)量化方法产生小叶中心的成像表型,
每个肺叶的全小叶肺气肿和间隔旁肺气肿 我们将对这些肺叶 LH 数据进行聚类,以识别不同的肺叶 LH 数据。
然后,我们将测试已识别的单组学关联。
具有遗传变异、DNA 甲基化标记、端粒长度、基因表达和
目标 2 将开发和评估外周血和肺组织样本中的蛋白质组学。
基于血液的多组学机器学习模型,可及时可靠地进行肺气肿模式的临床预测。
诊断需要基于血液的预测模型,因为它可以通过 CT 扫描识别受试者的肺气肿
这也将克服辐射暴露和假阳性结果的问题。
与 CT 扫描相关的目标 3 将通过应用分子信息来发现肺气肿亚型。
创新的、可解释的机器学习算法,捕获定向特征交互并提供
然后我们将进行聚类分析肺气肿亚型的分子决定因素的网络表示。
对双变量 Shapley 网络表示进行分析,以根据以下内容识别不同的受试者亚组
为了确认已识别途径的关键调节因子,我们将进行靶向基因分析。
气道上皮细胞和肺成纤维细胞基因的沉默和过度表达研究将是。
优先利用现有的生物学知识和网络分析进行功能验证。
创新、尖端的数据生成、分析方法和功能验证的结合,这
该项目将通过增强肺气肿表型分析和多组学分析做出重大贡献
更可靠的预测和对疾病病理学的更好理解将为我们铺平道路。
开发急需的新颖和个性化治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adel El Boueiz其他文献
Adel El Boueiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adel El Boueiz', 18)}}的其他基金
Clinical significance and genetic determinants of novel imaging measures of emphysema distribution in 9,743 smokers
9,743 名吸烟者肺气肿分布的新型影像学测量的临床意义和遗传决定因素
- 批准号:
10208938 - 财政年份:2018
- 资助金额:
$ 88.73万 - 项目类别:
Clinical significance and genetic determinants of novel imaging measures of emphysema distribution in 9,743 smokers
9,743 名吸烟者肺气肿分布的新型影像学测量的临床意义和遗传决定因素
- 批准号:
10208938 - 财政年份:2018
- 资助金额:
$ 88.73万 - 项目类别:
Clinical significance and genetic determinants of novel imaging measures of emphysema distribution in 9,743 smokers
9,743 名吸烟者肺气肿分布的新型影像学测量的临床意义和遗传决定因素
- 批准号:
9975215 - 财政年份:2018
- 资助金额:
$ 88.73万 - 项目类别:
Clinical significance and genetic determinants of novel imaging measures of emphysema distribution in 9,743 smokers
9,743 名吸烟者肺气肿分布的新型影像学测量的临床意义和遗传决定因素
- 批准号:
10425416 - 财政年份:2018
- 资助金额:
$ 88.73万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 88.73万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 88.73万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 88.73万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 88.73万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 88.73万 - 项目类别: