High-Density Ultra-Small Transparent Electrode Arrays for Brain-Slice Research
用于脑切片研究的高密度超小型透明电极阵列
基本信息
- 批准号:7478205
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAreaBathingBehaviorBrainCaliberCatalogingCatalogsCommunitiesComputer information processingCountCustomDataDepthDevelopmentDevicesDiseaseDyesElectric CapacitanceElectrodesElectrophysiology (science)EvaluationFractureGenerationsGoalsGoldImageryInvestigationLaboratoriesLengthMasksMeasurementMeasuresMechanicsMetalsMethodsNeuronal PlasticityNeuronsNeurophysiology - biologic functionNeurosciencesNoiseNumbersOpticsOutcomePathway interactionsPerformancePhasePhase I Clinical TrialsPopulationPositioning AttributePreparationProcessProductionPropertyPublic HealthPublishingRangeReportingResearchResearch PersonnelResolutionScheduleSignal TransductionSliceSmall Business Funding MechanismsSmall Business Innovation Research GrantStandards of Weights and MeasuresStressStructureSurfaceSystemTechniquesTechnologyTestingTimeTissuesWhole-Cell RecordingsWidthWorkbasecantilevercommercializationconceptcostcost effectivedensitydesignelectric impedanceengineering designimprovedjournal articlemanufacturing processmemberneuronal circuitrynovelpatch clampprototyperelating to nervous systemresearch studyresponsesilicon nitridesizesystems researchtool
项目摘要
DESCRIPTION (provided by applicant): Project Summary Recent advances in multiunit recording arrays have revolutionized the field of systems neuroscience. For example, over the past decade the multi-channel arrays fabricated by Multi-Channel Systems have been used by dozens of laboratories to publish hundreds of journal articles, pushing forward our understanding of information processing by large populations of neurons. As useful as well-based multichannel electrode arrays are, existing products do not adequately meet the need for systems capable of accessing the top of slice preparations. High-density transparent electrode arrays that can be accurately positioned on the top of slice preparations can greatly enhance experimental ease and capability. The ability to view underlying structures and reposition the array if necessary can dramatically improve experimental throughput and efficiency. The transparency of the arrays enables the use of optical recording techniques as well as patch-clamp methods in conjunction with multi channel stimulation and recording without having to look through or access structures deep within the slice. This Small Business Innovation Research Phase I project will investigate transparent electrode arrays with small electrode size and pitch, which can be accurately positioned on a slice. The products based on the proposed electrode arrays will enable neurophysiologists to explore neuronal circuitry with stimulation and recording electrode arrays that can be accurately positioned on top of a slice preparation. The goal of this Phase I project is to investigate the feasibility and limits of the manufacturing technology for use in a wide range of electrode array designs. The 32 channel arrays will be microfabricated out of low-stress silicon nitride and metal and will have a minimum electrode diameter of ~4 um distributed over a maximum area of 4 mm2. The electrical and mechanical properties of prototype electrode arrays will be evaluated. The data generated from this Phase I study will be used to develop limits and design rules to be employed by end users in the design customized electrode arrays. Array packaging will be developed in a manner facilitating their eventual wide-spread use by brain-slice research community. PUBLIC HEALTH RELEVANCE The proposed system will enable the large population of researchers that work with brain-slice preparations to compliment their research with high-resolution multi- electrode electrophysiology that can be easily positioned and repositioned. The ability to perform novel electrophysiological experiments by using a catalogue of standard and custom arrays will allow important issues of public health (neural diseases and behavior) to be studied with an unprecedented level of capability. The range of physical scales of the proposed probe array technology is small enough to target tiny regions of the neural tissue, while possessing transparency that allows for the accurate positioning of many electrodes needed to obtain valuable data.
描述(由申请人提供):项目摘要多单元记录阵列的最新进展彻底改变了系统神经科学领域。例如,在过去的十年中,多通道系统制造的多通道阵列已被数十个实验室使用,发表了数百篇期刊文章,推动了我们对大量神经元信息处理的理解。尽管基于孔的多通道电极阵列非常有用,但现有产品并不能充分满足对能够访问切片制备物顶部的系统的需求。可以精确定位在切片制备顶部的高密度透明电极阵列可以大大提高实验的简便性和能力。查看底层结构并在必要时重新定位阵列的能力可以显着提高实验通量和效率。阵列的透明度使得能够将光学记录技术以及膜片钳方法与多通道刺激和记录结合使用,而无需透视或访问切片深处的结构。这个小型企业创新研究第一阶段项目将研究具有小电极尺寸和间距的透明电极阵列,这些电极阵列可以精确地定位在切片上。基于所提出的电极阵列的产品将使神经生理学家能够通过刺激和记录电极阵列来探索神经元电路,这些电极阵列可以准确地定位在切片制备物的顶部。该第一阶段项目的目标是研究用于各种电极阵列设计的制造技术的可行性和局限性。 32 个通道阵列将采用低应力氮化硅和金属进行微加工,最小电极直径约为 4 微米,分布在最大 4 平方毫米的面积上。将评估原型电极阵列的电气和机械性能。第一阶段研究生成的数据将用于制定最终用户在设计定制电极阵列时使用的限制和设计规则。阵列封装的开发方式将有助于脑切片研究界最终广泛使用。公共健康相关性 所提出的系统将使大量从事脑切片准备工作的研究人员能够利用易于定位和重新定位的高分辨率多电极电生理学来补充他们的研究。通过使用一系列标准和定制阵列进行新颖的电生理学实验的能力将使公共健康的重要问题(神经疾病和行为)能够以前所未有的能力水平进行研究。所提出的探针阵列技术的物理尺度范围足够小,可以瞄准神经组织的微小区域,同时具有透明度,可以准确定位获得有价值数据所需的许多电极。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Matthews其他文献
Brian Matthews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Identifying Disparities in Care of Rural Patients with Cardiac Implantable Electronic Devices
确定使用心脏植入电子设备的农村患者的护理差异
- 批准号:
10555010 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Neuroimaging to investigate mechanisms underlying changes in Intake of high energy dense foods and alcohol from pre to post bariatric surgery
神经影像学研究减肥手术前后高能量密度食物和酒精摄入量变化的机制
- 批准号:
10639188 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: