Evolution of antero-posterior axis formation

前后轴形成的演变

基本信息

  • 批准号:
    7655911
  • 负责人:
  • 金额:
    $ 31.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-02-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The gene regulatory network that controls segmentation in insects has adapted to different developmental situations. For instance, the Bicoid morphogen plays a pivotal role in patterning the anterior of the long germ Drosophila embryo. However, no bicoid homologue has been found outside Diptera, even in other long germ insects. Here, we propose to continue our work on the long germ embryo of Nasonia (Nv), the wasp that is the focus of much of our studies. We have shown that four maternal functions are required to pattern the Nasonia embryo: hunchback (hb), orthodenticle (otd1), giant and caudal are the key maternal components of an ancestral patterning system whose function has been taken over by bicoid in Drosophila. We will ask how these genes act together to pattern the axis and achieve segmentation of the Nasonia embryo. Aim 1. We will continue our study of gap genes in Nasonia. We will test their cross-regulatory interactions and analyze their phenotypes using parental RNAi that works very well in Nasonia. We will pursue our analysis of pair-rule genes, in particular even-skipped (eve) and ftz whose expression patterns are dramatically different from those of flies, in particular in the posterior regions. We will test how they are controlled by upstream factors and will investigate the phenotype of pRNAi embryos. Aim 2 We will study the molecular regulation of pair-rule genes, focusing on eve whose control is understood in exquisite detail in Drosophila. We will identify the individual regulatory modules that control anterior pair-rule stripes of Nv eve, or posterior segmental expression. This will highlight the two modes of segmentation that appear to co-exist in insects: one for the anterior (and the only one in Drosophila), and one for the posterior segments that is reminiscent of the mode of segmentation of Tribolium. We will analyze the molecular mechanisms of Nv eve stripe 2 expression using genetics, bioinformatics and transgenics. Site-directed mutagenesis of the eve regulatory region will allow us to assess the roles of Otd1, Hb, gap gene as well as pair-rule gene products and how they differ from their roles in Drosophila. Aim 3 Our preliminary data indicate that localization of mRNA is a critical component of Nasonia's ability to pattern its embryo in the absence of bicoid. Nv otd1 mRNA is localized at both poles while giant is present only at the anterior and caudal form a mRNA gradient. We will evaluate the ability of the 3'UTR of these genes to direct mRNA localization in Drosophila and in Nasonia and assess whether the signals work across species. We will manipulate the cytoskeleton to define the requirements for mRNA localization machinery. The function of genes involved in this process in Drosophila will be tested by RNAi in Nasonia, and their importance for localizing each mRNA determined. PUBLIC HEALTH RELEVANCE: The Drosophila embryo is the best known complex biological system. However, it is a unique example that does not represent the diversity of life. By comparing Drosophila development with Nasonia, we will be able to distinguish general mechanisms that have broad implications for the development of animals from more specific processes.
描述(由申请人提供):控制昆虫分割的基因调节网络已适应不同的发育情况。例如,双子形态学在对长胚果果蝇胚胎的前部模式中起关键作用。但是,即使在其他长胚昆虫中,也没有发现双翅目内的双子同源物。在这里,我们建议继续在我们许多研究的重点的黄蜂(NV)上继续进行纳桑尼亚(NV)的长胚胎胚胎的工作。我们已经表明,需要四个母体功能来对鼻虫胚胎进行模拟:驼背(HB),正畸形(OTD1),巨型和尾骨是祖先模式系统的关键母体成分,其功能已被果蝇中的Bicoid接管。我们将询问这些基因如何共同作用以对轴进行模拟并实现鼻孔胚胎的分割。 AIM 1。我们将继续研究纳索尼亚的GAP基因。我们将测试他们的交叉调节相互作用,并使用在纳索尼亚效果很好的父母RNAi分析其表型。我们将进行对配对基因的分析,尤其是偶数(EVE)和FTZ,其表达模式与苍蝇(尤其是在后部区域)截然不同。我们将测试它们如何由上游因素控制,并研究PRNAi胚胎的表型。 AIM 2我们将研究成对规则基因的分子调节,重点是夏娃,其控制在果蝇中以精美的细节来理解。我们将确定控制NV前夕的前对规则条纹或后节段表达的单个调节模块。这将突出显示在昆虫中似乎共存的两种分割模式:一种用于前部(果蝇中唯一的一种),一种是一种,一种用于后段,后者让人想起益生的模式。我们将使用遗传学,生物信息学和转基因分析NV EVE条纹2表达的分子机制。夏娃调节区域的位置定向诱变将使我们能够评估OTD1,HB,GAP基因以及配对基因产物的作用,以及它们与果蝇在果蝇中的作用有何不同。 AIM 3我们的初步数据表明,mRNA的定位是纳索尼亚在没有双子体的情况下对其胚胎进行胚胎的能力的关键组成部分。 NV OTD1 mRNA位于两个极点,而巨型仅存在于前和尾部形成mRNA梯度。我们将评估这些基因3'UTR指导果蝇和鼻孔中mRNA定位的能力,并评估信号是否在跨物种上起作用。我们将操纵细胞骨架以定义mRNA定位机械的要求。 RNAi将在纳桑尼亚测试果蝇中涉及的基因的功能,以及它们对确定每个mRNA的重要性。公共卫生相关性:果蝇胚胎是最著名的复杂生物系统。但是,这是一个独特的例子,不能代表生活的多样性。通过比较果蝇的发育与纳索尼亚,我们将能够区分对动物的发展与更具体的过程具有广泛影响的一般机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claude Desplan其他文献

Claude Desplan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claude Desplan', 18)}}的其他基金

High resolution neuronal lineage tracing
高分辨率神经元谱系追踪
  • 批准号:
    10042321
  • 财政年份:
    2020
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    10171746
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    10895736
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    9925717
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    10660241
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    10425261
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Aging and rejuvenation: An ant model to study the regulation of longevity
衰老与返老还童:研究长寿调控的蚂蚁模型
  • 批准号:
    9769611
  • 财政年份:
    2018
  • 资助金额:
    $ 31.44万
  • 项目类别:
Mapping the optic lobes for color vision
绘制色觉视叶图
  • 批准号:
    7344708
  • 财政年份:
    2007
  • 资助金额:
    $ 31.44万
  • 项目类别:
Mapping the optic lobes for color vision
绘制色觉视叶图
  • 批准号:
    8411124
  • 财政年份:
    2007
  • 资助金额:
    $ 31.44万
  • 项目类别:
Mapping the optic lobes for color vision
绘制色觉视叶图
  • 批准号:
    8627169
  • 财政年份:
    2007
  • 资助金额:
    $ 31.44万
  • 项目类别:

相似海外基金

Evolution of antero-posterior axis formation
前后轴形成的演变
  • 批准号:
    8242051
  • 财政年份:
    2003
  • 资助金额:
    $ 31.44万
  • 项目类别:
Evolution of antero-posterior axis formation
前后轴形成的演变
  • 批准号:
    8076832
  • 财政年份:
    2003
  • 资助金额:
    $ 31.44万
  • 项目类别:
Translational Regulation of Patterning in Drosophila
果蝇图案化的翻译调控
  • 批准号:
    9308548
  • 财政年份:
    2001
  • 资助金额:
    $ 31.44万
  • 项目类别:
Translational Regulation of Patterning in Drosophila
果蝇图案化的翻译调控
  • 批准号:
    7650608
  • 财政年份:
    2001
  • 资助金额:
    $ 31.44万
  • 项目类别:
Translational Regulation of Patterning in Drosophila
果蝇图案化的翻译调控
  • 批准号:
    8643240
  • 财政年份:
    2001
  • 资助金额:
    $ 31.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了