Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
基本信息
- 批准号:10759829
- 负责人:
- 金额:$ 27.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionBindingCDK2 geneComputersComputing MethodologiesDataDatabasesDockingDrug TargetingEvaluationExplosionFree EnergyGoalsHeadLeadLigand BindingLigandsMechanicsMethodsModificationMolecularOutputProcessProteinsProtocols documentationPublicationsQuantum MechanicsReliability of ResultsResourcesSamplingSavingsSpeedSystemTailTestingThrombinTimeTriageVirtual ToolWorkbeta-site APP cleaving enzyme 1computational chemistrycostdata modelingdrug candidatedrug discoveryfallsimprovedinterestlead candidatelead optimizationmechanical forcemolecular mechanicsnovelnovel strategiesprogramsquantumreceptorrestraintscreeningsimulationtimelinevirtualvirtual screening
项目摘要
Project Summary
Computational chemistry has revolutionized drug discovery, reducing by months or even years the amount of
time it takes to discover and refine a lead candidate. Nowhere has the contribution of computational chemistry
been greater than in the realm of virtual screening (VS) to identify an initial hit to a drug target receptor. It is
now routine to screen 106-108 virtual compounds via molecular docking to identify potential binders. A small
number of these will be purchased and screened, which is a slower and more expensive process. While
docking is demonstrably useful for brute force triage, it is also generally unreliable for rank-ordering the
compounds that survive the triage. There is a substantial and unmet need for computational methods that are
better at rank ordering that can further reduce the number of compounds that survive to purchase/screening.
Interest is growing in an approach termed ABFE, in which the Absolute Binding Free Energies of diverse
ligands can be evaluated for a common protein receptor target. This approach is a natural outgrowth of relative
binding free energy (RBFE) methods, the most well-known of which is Free Energy Perturbation (FEP). In
recent years, the application of FEP for hit-to-lead optimization has exploded, thanks to increasing computer
resources and automized workflows.
With a reliable ABFE approach, further enrichment of the potential binders that come from dock-based
screening can be obtained, improving the cost/hit ratio for the expensive experimental tail of the screening
campaign.
Based on FEP, the computational formalism that would make ABFE calculations possible within the screening
paradigm has been described, and a few publications have demonstrated that it is, indeed, capable of further
enriching the compounds that survive the molecular docking screen. These calculations have still been limited
by two issues: 1) Computational throughput; 2) Limitations of the Molecular Mechanics (MM) force field that
has been exclusively used in these ABFE/FEP simulations. The limitations of computational throughput are
increasingly addressed by expansion in the availability of cloud resources, so the limitations of the MM force
field are the primary issue.
We propose an ABFE/FEP approach that replaces the limited MM representation with one based on a
combined quantum mechanics (QM) +MM approach: QM/MM—where the region of ligand binding is treated
using QM. In contrast to MM, QM describes molecular energetics much more exactly, and is broadly appliable
to all classes of molecular ligands, unlike MM, which has a large number of known limitations/deficiencies.
We will apply ABFE/FEP calculations to a variety of systems to validate the approach within the context of
virtual screening, and to demonstrate the improvements that QM/MM allows versus traditional MM approaches.
项目概要
计算化学彻底改变了药物发现,将药物的用量减少了数月甚至数年。
发现和完善主要候选者需要时间,没有计算化学的贡献。
比虚拟筛选 (VS) 领域更能识别药物靶标受体的初始命中。
现在常规通过分子对接筛选 106-108 个虚拟化合物,以识别潜在的 A 小 A 结合物。
其中一些将被购买和筛选,这是一个更慢且更昂贵的过程。
对接对于强力分类显然很有用,但对于排序排序通常也是不可靠的
在分类中幸存下来的化合物对计算方法存在大量且未得到满足的需求。
更好地进行排序,可以进一步减少购买/筛选中幸存的化合物数量。
人们对一种称为 ABFE 的方法越来越感兴趣,其中不同物质的绝对结合自由能
可以评估配体的常见蛋白质受体靶标,这种方法是相对的自然产物。
结合自由能(RBFE)方法,其中最著名的是自由能扰动(FEP)。
近年来,由于计算机的不断增加,FEP 在从命中到先导优化方面的应用呈爆炸式增长
资源和自动化工作流程。
通过可靠的 ABFE 方法,进一步丰富来自码头的潜在粘合剂
可以获得筛选,提高筛选昂贵的实验尾部的成本/命中率
活动。
基于 FEP 的计算形式使 ABFE 计算在筛选中成为可能
范式已经被描述,并且一些出版物已经证明它确实能够进一步
富集分子对接筛选中幸存的化合物这些计算仍然有限。
两个问题:1)计算吞吐量;2)分子力学(MM)力场的局限性
已专门用于这些 ABFE/FEP 模拟,但计算吞吐量的限制是。
云资源可用性的扩展越来越多地解决了 MM 力量的局限性
领域是首要问题。
我们提出了一种 ABFE/FEP 方法,用基于
组合量子力学 (QM) +MM 方法:QM/MM——处理配体结合区域
使用 QM 与 MM 相比,QM 更准确地描述分子能量学,并且适用范围广泛。
适用于所有类别的分子配体,与 MM 不同,MM 具有大量已知的限制/缺陷。
我们将把 ABFE/FEP 计算应用于各种系统,以在以下环境中验证该方法:
虚拟筛选,并展示 QM/MM 相对于传统 MM 方法的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Pearlman其他文献
David A Pearlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Pearlman', 18)}}的其他基金
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
iAGREE: A Multi- Center, Networked Patient Consent Study
iAGREE:一项多中心、网络化患者同意研究
- 批准号:
10748211 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Sugar-coating our way to genetically modified mesenchymal stem cells: Glycocalyx-inspired cell culture substrates that prime mesenchymal stem cells for polycation-mediated pDNA delivery.
糖衣我们的转基因间充质干细胞之路:糖萼启发的细胞培养基质为间充质干细胞提供聚阳离子介导的 pDNA 传递。
- 批准号:
10647120 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别: