Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
基本信息
- 批准号:10698836
- 负责人:
- 金额:$ 14.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBenchmarkingBindingBinding SitesBiological ModelsCloud ComputingComplexDecision MakingDockingEvaluationFailureFree EnergyGrantLeadLengthLigandsMainstreamingMethodsModelingModernizationMolecularMolecular ConformationPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePotential EnergyProcessProteinsProtocols documentationPublishingQuantum MechanicsReliability of ResultsRunningSamplingSampling ErrorsScienceSeriesSpeedSystemTimeTriageTrustUpdateWorkbeta-Cyclodextrinscomputational chemistrycostdrug discoverydrug modificationexpectationimprovedinterestmechanical energymolecular dynamicsmolecular mechanicsnext generationnovelnovel strategiesprogramsprotein structureprotonationreceptorsimulationusabilityvirtual screeningweb platform
项目摘要
Project Summary
The value of computational chemistry to commercial drug discovery is now well-established. Virtual screening
(including molecular docking) now jumpstarts most discovery efforts. More recently, a combination of GPU and
cloud based computing has vastly increased the realistic computational throughput available for drug
discovery. In turn, this has ignited substantial interest in relative free energy calculations (e.g. Free Energy
Perturbation, FEP) for drug lead enhancement. FEP has been applied at the fringes of drug discovery for
decades, but massive parallelism in the more recent past has moved FEP to center stage, and FEP has
helped shave months or years off discovery efforts where these calculations are reliable.
The catch is that FEP calculations are not always reliable. While for some systems, the error in a FEP result is
much less than one kcal/mol--and they have successfully steered slow/expensive bench efforts--there are
other systems where the predictions are not very useful. Even where retrospective analysis is possible, it is
often not very clear why FEP calculations are so good for some target systems, and so bad for others. Broadly,
the limitations of FEP can be distilled down to three problems: A poor description of the energetics (force field);
insufficient sampling; or a misunderstanding of the fundamental science (e.g., incorrect protein model, wrong
binding site, wrong protonation state, etc.). It is generally believed that many issues arise from the first of
these—and improving the evaluation of energetics using quantum mechanics (QM) will be the focus here.
There is a huge interest in methods that can help obviate the existing problems with FEP. Herein, we propose
a new platform for FEP, which incorporates a quantum mechanical description of the molecular interaction of
central interest. The traditional force field used with FEP is a simplified analytic expression with fit coefficients
termed Molecular Mechanics (MM). MM is a simple approximation of the true molecular interactions that can
be described using quantum mechanics. But QM has been, until recently, far too expensive to use in the
context of the molecular dynamics (MD) sampling required for FEP.
At long last, we have determined how to integrate QM into the FEP paradigm, using a carefully programmed
distributed processing platform that lends itself to use on commodity cloud computers, and by integrating a
semiempirical QM implementation that provides predictions that are much better than those from MM, but at a
cost far less than for a full DFT QM prediction. Our implementation allows FEP calculations with a realistic QM
core region of hundreds of atoms to be carried out with the scale of sampling associated with accurate FEP
calculations and with turnaround commensurate with modern drug discovery. Here, we propose to validate this
platform against traditional MM-based FEP, to show it addresses many of the issues of that approach. We will
also identify additional implementation ideas to further improve effective throughput and/or accuracy.
项目概要
计算化学对商业药物发现的价值现已得到证实。
(包括分子对接)现在启动了大多数发现工作,最近,GPU 和 GPU 的结合。
基于云的计算极大地提高了药物可用的实际计算吞吐量
反过来,这引发了人们对相对自由能计算(例如自由能)的浓厚兴趣。
用于药物先导增强的扰动(FEP)已应用于药物发现的边缘。
几十年来,但最近的大规模并行性已将 FEP 推到了中心舞台,并且 FEP 已经
在这些计算可靠的情况下,帮助减少了数月或数年的发现工作。
问题是 FEP 计算并不总是可靠,而对于某些系统,FEP 结果中存在错误。
远低于一千卡/摩尔——而且他们已经成功地控制了缓慢/昂贵的替补工作——有
即使可以进行回顾性分析,预测也不是很有用。
通常不太清楚为什么 FEP 计算对于某些目标系统如此好,而对于其他系统则如此糟糕。
FEP 的局限性可以归结为三个问题: 对能量学(力场)的描述不佳;
采样不足;或对基础科学的误解(例如,不正确的蛋白质模型、错误的
一般认为,许多问题都是由第一个引起的。
这些以及使用量子力学 (QM) 改进能量学评估将是这里的重点。
人们对有助于消除 FEP 现有问题的方法非常感兴趣,我们在此提出建议。
FEP 的新平台,结合了分子相互作用的量子力学描述
FEP 使用的传统力场是带有拟合系数的简化解析表达式。
分子力学 (MM) 是真实分子相互作用的简单近似。
但直到最近,量子力学在量子力学中的应用仍然过于昂贵。
FEP 所需的分子动力学 (MD) 采样背景。
最后,我们确定了如何使用精心编程的方法将 QM 集成到 FEP 范式中。
分布式处理平台,适合在商用云计算机上使用,并通过集成
半经验 QM 实现提供的预测比 MM 的预测要好得多,但速度较慢
我们的实现允许使用真实的 QM 进行 FEP 计算,其成本远低于完整的 DFT QM 预测。
数百个原子的核心区域将进行与精确 FEP 相关的采样规模
在这里,我们建议验证这一点。
与传统的基于 MM 的 FEP 相比,我们将展示它解决了该方法的许多问题。
还确定实施其他想法以进一步提高有效吞吐量和/或准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Pearlman其他文献
David A Pearlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Pearlman', 18)}}的其他基金
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
相似国自然基金
区域性农业干旱、强风、低温气象指数保险产品设计与应用研究
- 批准号:71173139
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
基于标杆管理的县级疾病预防控制机构绩效诊断与改进的关键技术研究
- 批准号:71003025
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
宏观分层虚拟标杆管理理论与方法创新研究
- 批准号:70963003
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:
10646626 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Genome sequencing for evaluating the efficacy, specificity, and safety of human genome editing
用于评估人类基因组编辑的有效性、特异性和安全性的基因组测序
- 批准号:
10667893 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Developing novel LOX inhibitors to target chemotherapy resistant TNBC
开发新型 LOX 抑制剂以靶向化疗耐药的 TNBC
- 批准号:
10696810 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别: