Massive single cell proteomics for cancer biology
用于癌症生物学的大规模单细胞蛋白质组学
基本信息
- 批准号:10707321
- 负责人:
- 金额:$ 64.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureBenchmarkingBone MarrowCancer BiologyCell SeparationCell physiologyCellsCellular biologyClinicalClinical TreatmentCollaborationsCommunitiesCouplingDataDiagnosisDigestionDisease ProgressionDisease ResistanceEnvironmentEvolutionGenomicsGoalsHematopoietic NeoplasmsHeterogeneityHumanImmuneIndividualIsotope LabelingKnowledgeLabelLaboratoriesLiquid substanceMalignant - descriptorMalignant NeoplasmsMass Spectrum AnalysisMethodsMicrofluidicsMolecularMultiple MyelomaNatureOutcomePathogenesisPathologicPatientsPerformancePeripheral Blood Mononuclear CellPhenotypePlasmaPlasma CellsPopulationPost-Translational Protein ProcessingPreparationProcessProteinsProteomeProteomicsRNAResearchResistanceRunningSamplingSomatic CellSpecimenSystemTechnologyTherapeuticTranscriptUniversitiesWashingtonYeastscancer proteomicscell preparationchimeric antigen receptor T cellscomputational pipelinescost efficientdata acquisitiondensityimprovedindividual variationinnovationinsightmicrochipnanoDropletneoplastic cellnext generationnext generation sequencingpersonalized medicineprotein biomarkersprotein expressionprotein profilingrelapse patientssingle cell technologysingle-cell RNA sequencingsuccesstherapy resistanttranscriptomicstumortumor heterogeneitytumor progressiontumor-immune system interactions
项目摘要
PROJECT SUMMARY/ABSTRACT
Single-cell technologies have become the cornerstone of biomedical and cell biology research. Next-
generation sequencing-based technologies have enabled large-scale characterization of transcript expressions
in single cells from clinical specimens and reveal unexpected cellular heterogeneity related to pathogenesis.
However, many integrative studies have shown only low to moderate correlations between the abundance of
RNA transcripts and their corresponding proteins, the main determinants of cell phenotype. We hypothesize
mass spectrometry-based single-cell proteomics could provide direct insight on the cellular heterogeneity and
inform protein markers related to disease progression and resistance to therapy. The overall objective of this
project is to develop a high throughput single-cell proteomics (scProteomics) platform to enable the routine
analysis of >10,000 single cells at a depth of 2000 proteins in a cost-efficient way. The developed technology
will be disseminated to the research community through close collaboration with a commercial partner. We will
also apply scProteomics to interrogate the heterogeneity of both malignant plasma cell and immune cell
populations from multiple myeloma patients. We will pursue these goals through three specific aims: 1) To
establish an ultra-high throughput single-cell preparation method by coupling an enhanced multiplexing method
with high-density nested nanoPOTS chips and multi-channel droplet dispensing system; We aim to process
>2000 cells in a single microchip, and multiplex-label 36 single cells for a single LC-MS analysis; 2) To
advance the throughput, sensitivity, and quantitation accuracy of LC-MS system. A dual-column nanoLC
system and a FAIMS-based MS acquisition method will be developed to enable the analysis of >860 cells per
day with high quantitation precision; 3) To apply scProteomics to profile ~10,000 plasma and immune cells
from MM patients. We will integrate scProteomics with existing scRNA-seq data to explore tumor
heterogeneity, chimeric antigen receptor T-cells (CAR-T) markers, and the immune microenvironment in
multiple myeloma. This research is highly innovative because the proposed single-cell proteomics platform will
be the first of its kind to routinely and reliably characterize > 10,000 single cells at a throughput comparable to
single-cell transcriptomics. It is also the first scProteomics study of primary liquid tumor cells isolated from the
pathological environment, e.g. bone marrow of MM patients. Statement of Impact: Tumor heterogeneity has
indispensable implications in cancer evolution, tumoral spatial organization, and clinical treatment. Single-cell
proteomics could provide a basis to unravel these complicated relationships and to clarify the mechanisms of
cancer progression and subclone resistance to therapeutic treatments.
项目摘要/摘要
单细胞技术已成为生物医学和细胞生物学研究的基石。下一个-
基于生成测序的技术已实现了成绩单表达式的大规模表征
在临床标本的单个细胞中,揭示了与发病机理有关的意外细胞异质性。
但是,许多综合研究仅显示丰度之间的相关性低到中等相关性
RNA转录本及其相应的蛋白质,是细胞表型的主要决定因素。我们假设
基于质谱的单细胞蛋白质组学可以直接了解细胞异质性和
告知与疾病进展和对治疗抗性有关的蛋白质标志物。总体目标
项目将开发高吞吐量单细胞蛋白质组学(SCProteomics)平台以启用例程
以经济高效的方式分析在2000蛋白质深度的> 10,000个单元。开发的技术
通过与商业合作伙伴的密切合作,将传播到研究社区。我们将
还应应用ScProteomics询问恶性血浆细胞和免疫细胞的异质性
来自多个骨髓瘤患者的种群。我们将通过三个具体目标来追求这些目标:1)
通过耦合增强的多路复用方法来建立超高吞吐量的单细胞制备方法
具有高密度的嵌套纳米芯片和多通道液滴分配系统;我们的目标是处理
单个微芯片中的> 2000个细胞和多路标签36个单细胞用于单个LC-MS分析; 2)到
提高LC-MS系统的吞吐量,灵敏度和定量精度。双列纳米克
将开发系统和基于FAIMS的MS采集方法,以实现对> 860个单元的分析
日常精确度; 3)将SCPROTEOMICS应用于概述〜10,000个血浆和免疫细胞
来自MM患者。我们将将ScProteomics与现有的SCRNA-SEQ数据集成以探索肿瘤
异质性,嵌合抗原受体T细胞(CAR-T)标记和免疫微环境
多发性骨髓瘤。这项研究具有很高的创新性,因为拟议的单细胞蛋白质组学平台将
成为同类中的第一个常规和可靠地表征> 10,000个单元格的吞吐量
单细胞转录组学。这也是对从中分离的原发性液体肿瘤细胞的首次Scproteomics研究
病理环境,例如MM患者的骨髓。影响声明:肿瘤异质性具有
对癌症进化,肿瘤空间组织和临床治疗的不可或缺的影响。单细胞
蛋白质组学可以提供基础来揭示这些复杂的关系,并阐明
癌症进展和亚克隆对治疗治疗的抗性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ljiljana Pasa-Tolic其他文献
Ljiljana Pasa-Tolic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ljiljana Pasa-Tolic', 18)}}的其他基金
Spatially-resolved proteome mapping of senescent cells and their tissue microenvironment at single-cell resolution
单细胞分辨率下衰老细胞及其组织微环境的空间分辨蛋白质组图谱
- 批准号:
10684865 - 财政年份:2022
- 资助金额:
$ 64.75万 - 项目类别:
Spatially-resolved proteome mapping of senescent cells and their tissue microenvironment at single-cell resolution
单细胞分辨率下衰老细胞及其组织微环境的空间分辨蛋白质组图谱
- 批准号:
10552842 - 财政年份:2022
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10687330 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10118771 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10889043 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
Spatially resolved characterization of proteoforms for functional proteomics
功能蛋白质组学蛋白质型的空间分辨表征
- 批准号:
10256724 - 财政年份:2020
- 资助金额:
$ 64.75万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 64.75万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 64.75万 - 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:
10644759 - 财政年份:2023
- 资助金额:
$ 64.75万 - 项目类别:
Early Cognitive Impairment as a function of Alzheimer's Disease and Trauma
阿尔茨海默病和创伤导致的早期认知障碍
- 批准号:
10479319 - 财政年份:2023
- 资助金额:
$ 64.75万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 64.75万 - 项目类别: