Mechanisms of replication origin licensing studied by real-time single-molecule fluorescence
通过实时单分子荧光研究复制起点许可机制
基本信息
- 批准号:10707170
- 负责人:
- 金额:$ 38.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectBindingBinding SitesBiochemicalBiochemistryBiological AssayBypassCell CycleCell divisionCellsChromosomesCollaborationsComplementComplexCryoelectron MicroscopyDNADNA BindingDNA biosynthesisDNA replication forkDNA replication originDefectDepositionDevelopmentElementsEnsureEukaryotic CellEventExperimental GeneticsFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferG1 PhaseGenomeGenomic InstabilityHeadHumanIn VitroIndividualKineticsLeadLicensingMaintenanceMalignant NeoplasmsMediatingMolecularMolecular BiologyMolecular GeneticsMolecular MachinesMonitorMutationN-terminalNatureNucleosomesOrganismPathway interactionsProcessProductivityProteinsReactionRegulationReplication InitiationReplication OriginResearchRoleS phaseSaccharomycetalesShapesSiteSpecificityStructureTechniquesTestingTimeYeastsexperimental studygenome integrityhelicasein vivoinsightmutantnovelorigin recognition complexpreventprotein protein interactionreconstitutionrecruitsingle moleculetargeted treatmenttooltumorigenesisyeast protein
项目摘要
Project Summary
DNA replication is essential to maintain the genome of all organisms. During each round of cell division,
eukaryotic cells must establish hundreds to thousands of replication forks that coordinately replicate each
chromosome. These events begin during G1, when two copies of the replicative helicase, the Mcm2-7
complex, are loaded at all potential origins of DNA replication. Once loaded, the two ring-shaped,
heterohexameric Mcm2-7 complexes encircle the DNA and interact tightly via their N-terminal domains.
Although inactive, the resulting head-to-head Mcm2-7 double hexamer licenses each origin for subsequent
bidirectional initiation upon entry into S phase. Consistent with their importance, mutations in or misregulation
of the proteins mediating helicase loading lead to cancer and developmental abnormalities. Thus,
understanding the mechanism of these processes will provide critical information concerning the maintenance
of genome integrity and potential targets for therapeutics.
The biochemical reconstitution of helicase loading using budding yeast proteins has been a powerful
tool to understand these events, however, bulk biochemical assays are poorly suited to study the complex
dynamics involved in helicase loading due to their frequently incomplete and asynchronous nature. Single-
molecule fluorescence microscopy experiments bypass these problems by monitoring events on individual
DNA molecules in real time, defining the sequence of biochemical events, detecting short-lived intermediates
and specific protein-protein interactions, and defining quantitative kinetic mechanisms. We propose single-
molecule experiments on helicase loading using reconstituted yeast proteins in vitro, supplemented with
molecular genetics experiments on live cells. Together, these studies will provide critical insights into the
dynamic mechanisms of helicase loading and will complement and aid in the interpretation of the static
structures revealed in recent cryoelectron microscopy studies.
The proposed research primarily focuses on events of helicase loading that are conserved across all
eukaryotic organisms. Both yeast and metazoan ORC induce a strong bend in the DNA upon binding. In
Specific Aim one, we investigate the role of this activity in origin selection and determine which steps in
helicase loading require this function. The MO complex is a key helicase-loading intermediate that ensures the
second recruited Mcm2-7 forms head-to-head interactions with the first. In Aim two, we will determine the role
of this complex in closing of the Mcm2-7 ring around DNA and define the pathways by which ORC and Mcm2-
7 form this complex. In the final Aim, we will determine how nucleosomes and sequence-nonspecific ORC
DNA binding change helicase loading, both key elements of origin selection in metazoan species.
项目摘要
DNA复制对于维持所有生物的基因组至关重要。在每一轮细胞分裂期间,
真核细胞必须建立数百至数千的复制叉,以协调每个复制
染色体。这些事件始于G1,当时有两个复制性解旋酶,即MCM2-7
复合物在DNA复制的所有潜在起源上加载。一旦加载,两个环形,
杂己聚集MCM2-7复合物包围DNA并通过其N末端结构域紧密相互作用。
尽管不活动,但由此产生的头对头MCM2-7双重六聚体许可证各自来源
进入S阶段时的双向启动。与它们的重要性,突变或不正义相一致
介导解旋酶负荷的蛋白质导致癌症和发育异常。因此,
了解这些过程的机制将提供有关维护的关键信息
基因组完整性和治疗剂的潜在靶标。
使用发芽酵母蛋白的解旋酶负载的生化重构是一种强大的
但是,了解这些事件的工具,大量的生化测定不适合研究该复合物
由于它们经常不完整和异步性,导致解旋酶负荷涉及的动力学。单身的-
分子荧光显微镜实验绕过了这些问题,通过监视个人
实时DNA分子,定义生化事件的序列,检测短暂的中间体
和特定的蛋白质 - 蛋白质相互作用,并定义定量动力学机制。我们提出了单一
在体外使用重构的酵母蛋白进行解旋酶负荷的分子实验,并补充
在活细胞上进行分子遗传学实验。这些研究将共同提供对
解旋酶负荷的动态机制,并将补充和有助于解释静态
在最近的低温电子显微镜研究中揭示的结构。
拟议的研究主要集中于在所有人中保守的解旋酶负荷事件
真核生物。酵母和后生兽人在结合后会引起DNA的强弯。在
特定目的一,我们研究了该活动在原点选择中的作用,并确定哪些步骤
解旋酶加载需要此功能。 MO建筑群是一个关键的旋转酶加载中间体,可确保
第二次招募的MCM2-7与第一个形成了正面的互动。在目标两个中,我们将确定角色
在DNA周围MCM2-7环关闭中的这种复合物中,并定义了兽人和MCM2-的途径
7形成这个复合物。在最终目标中,我们将确定核小体和序列非特异性兽人如何
DNA结合变化解旋酶负载,这是后生种类中原点选择的两个关键要素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen P. Bell其他文献
MIT Open Access Articles Separation of DNA Replication from the Assembly of Break-Competent Meiotic Chromosomes
麻省理工学院开放获取文章从具有断裂能力的减数分裂染色体组装中分离 DNA 复制
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hannah G. Blitzblau;Clara S. Chan;Andreas Hochwagen;Stephen P. Bell - 通讯作者:
Stephen P. Bell
Stephen P. Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen P. Bell', 18)}}的其他基金
Mechanisms of replication origin licensing studied by real-time single-molecule fluorescence
通过实时单分子荧光研究复制起点许可机制
- 批准号:
10539422 - 财政年份:2022
- 资助金额:
$ 38.43万 - 项目类别:
Pre-doctoral Training in Fundamental Approaches to Biochemistry and Cell and Molecular Biology
生物化学、细胞和分子生物学基础方法的博士前培训
- 批准号:
10205194 - 财政年份:2021
- 资助金额:
$ 38.43万 - 项目类别:
Pre-doctoral Training in Fundamental Approaches to Biochemistry and Cell and Molecular Biology
生物化学、细胞和分子生物学基础方法的博士前培训
- 批准号:
10427297 - 财政年份:2021
- 资助金额:
$ 38.43万 - 项目类别:
MCM PROTEIN FUNCTION DURING EUKARYOTIC DNA REPLICATION
真核 DNA 复制过程中的 MCM 蛋白功能
- 批准号:
6151240 - 财政年份:1999
- 资助金额:
$ 38.43万 - 项目类别:
MCM PROTEIN FUNCTION DURING EUKARYOTIC DNA REPLICATION
真核 DNA 复制过程中的 MCM 蛋白功能
- 批准号:
6498795 - 财政年份:1999
- 资助金额:
$ 38.43万 - 项目类别:
MCM PROTEIN FUNCTION DURING EUKARYOTIC DNA REPLICATION
真核 DNA 复制过程中的 MCM 蛋白功能
- 批准号:
6351274 - 财政年份:1999
- 资助金额:
$ 38.43万 - 项目类别:
MCM PROTEIN FUNCTION DURING EUKARYOTIC DNA REPLICATION
真核 DNA 复制过程中的 MCM 蛋白功能
- 批准号:
2734872 - 财政年份:1999
- 资助金额:
$ 38.43万 - 项目类别:
INITIATION OF DNA REPLICATION OF YEAST CHROMOSOMES
酵母染色体 DNA 复制的起始
- 批准号:
2191324 - 财政年份:1995
- 资助金额:
$ 38.43万 - 项目类别:
Initiation of DNA Replication of Yeast Chromosomes
酵母染色体 DNA 复制的起始
- 批准号:
8514624 - 财政年份:1995
- 资助金额:
$ 38.43万 - 项目类别:
Initiation of DNA Replication of Yeast Chromosomes
酵母染色体 DNA 复制的起始
- 批准号:
7846908 - 财政年份:1995
- 资助金额:
$ 38.43万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Developing and Evaluating a Positive Valence Treatment for Alcohol Use Disorder with Anxiety or Depression
开发和评估治疗伴有焦虑或抑郁的酒精使用障碍的正价疗法
- 批准号:
10596013 - 财政年份:2023
- 资助金额:
$ 38.43万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 38.43万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 38.43万 - 项目类别:
Sumoylation and its regulation in testicular Sertoli cells
睾丸支持细胞的苏酰化及其调控
- 批准号:
10654204 - 财政年份:2023
- 资助金额:
$ 38.43万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 38.43万 - 项目类别: